![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglineinteq | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | β’ π = (BaseβπΊ) |
tglineintmo.i | β’ πΌ = (ItvβπΊ) |
tglineintmo.l | β’ πΏ = (LineGβπΊ) |
tglineintmo.g | β’ (π β πΊ β TarskiG) |
tglineinteq.a | β’ (π β π΄ β π) |
tglineinteq.b | β’ (π β π΅ β π) |
tglineinteq.c | β’ (π β πΆ β π) |
tglineinteq.d | β’ (π β π· β π) |
tglineinteq.e | β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) |
tglineinteq.1 | β’ (π β π β (π΄πΏπ΅)) |
tglineinteq.2 | β’ (π β π β (π΄πΏπ΅)) |
tglineinteq.3 | β’ (π β π β (πΆπΏπ·)) |
tglineinteq.4 | β’ (π β π β (πΆπΏπ·)) |
Ref | Expression |
---|---|
tglineinteq | β’ (π β π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineinteq.1 | . 2 β’ (π β π β (π΄πΏπ΅)) | |
2 | tglineinteq.2 | . 2 β’ (π β π β (π΄πΏπ΅)) | |
3 | tglineintmo.p | . . 3 β’ π = (BaseβπΊ) | |
4 | tglineintmo.i | . . 3 β’ πΌ = (ItvβπΊ) | |
5 | tglineintmo.l | . . 3 β’ πΏ = (LineGβπΊ) | |
6 | tglineintmo.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | tglineinteq.a | . . . 4 β’ (π β π΄ β π) | |
8 | tglineinteq.b | . . . 4 β’ (π β π΅ β π) | |
9 | 3, 5, 4, 6, 7, 8, 1 | tglngne 28270 | . . . 4 β’ (π β π΄ β π΅) |
10 | 3, 4, 5, 6, 7, 8, 9 | tgelrnln 28350 | . . 3 β’ (π β (π΄πΏπ΅) β ran πΏ) |
11 | tglineinteq.c | . . . 4 β’ (π β πΆ β π) | |
12 | tglineinteq.d | . . . 4 β’ (π β π· β π) | |
13 | tglineinteq.3 | . . . . 5 β’ (π β π β (πΆπΏπ·)) | |
14 | 3, 5, 4, 6, 11, 12, 13 | tglngne 28270 | . . . 4 β’ (π β πΆ β π·) |
15 | 3, 4, 5, 6, 11, 12, 14 | tgelrnln 28350 | . . 3 β’ (π β (πΆπΏπ·) β ran πΏ) |
16 | tglineinteq.e | . . . 4 β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) | |
17 | 3, 4, 5, 6, 7, 8, 11, 12, 16 | tglineneq 28364 | . . 3 β’ (π β (π΄πΏπ΅) β (πΆπΏπ·)) |
18 | 3, 4, 5, 6, 10, 15, 17 | tglineintmo 28362 | . 2 β’ (π β β*π₯(π₯ β (π΄πΏπ΅) β§ π₯ β (πΆπΏπ·))) |
19 | 1, 13 | jca 511 | . 2 β’ (π β (π β (π΄πΏπ΅) β§ π β (πΆπΏπ·))) |
20 | tglineinteq.4 | . . 3 β’ (π β π β (πΆπΏπ·)) | |
21 | 2, 20 | jca 511 | . 2 β’ (π β (π β (π΄πΏπ΅) β§ π β (πΆπΏπ·))) |
22 | eleq1 2813 | . . . 4 β’ (π₯ = π β (π₯ β (π΄πΏπ΅) β π β (π΄πΏπ΅))) | |
23 | eleq1 2813 | . . . 4 β’ (π₯ = π β (π₯ β (πΆπΏπ·) β π β (πΆπΏπ·))) | |
24 | 22, 23 | anbi12d 630 | . . 3 β’ (π₯ = π β ((π₯ β (π΄πΏπ΅) β§ π₯ β (πΆπΏπ·)) β (π β (π΄πΏπ΅) β§ π β (πΆπΏπ·)))) |
25 | eleq1 2813 | . . . 4 β’ (π₯ = π β (π₯ β (π΄πΏπ΅) β π β (π΄πΏπ΅))) | |
26 | eleq1 2813 | . . . 4 β’ (π₯ = π β (π₯ β (πΆπΏπ·) β π β (πΆπΏπ·))) | |
27 | 25, 26 | anbi12d 630 | . . 3 β’ (π₯ = π β ((π₯ β (π΄πΏπ΅) β§ π₯ β (πΆπΏπ·)) β (π β (π΄πΏπ΅) β§ π β (πΆπΏπ·)))) |
28 | 24, 27 | moi 3706 | . 2 β’ (((π β (π΄πΏπ΅) β§ π β (π΄πΏπ΅)) β§ β*π₯(π₯ β (π΄πΏπ΅) β§ π₯ β (πΆπΏπ·)) β§ ((π β (π΄πΏπ΅) β§ π β (πΆπΏπ·)) β§ (π β (π΄πΏπ΅) β§ π β (πΆπΏπ·)))) β π = π) |
29 | 1, 2, 18, 19, 21, 28 | syl212anc 1377 | 1 β’ (π β π = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β¨ wo 844 = wceq 1533 β wcel 2098 β*wmo 2524 βcfv 6533 (class class class)co 7401 Basecbs 17143 TarskiGcstrkg 28147 Itvcitv 28153 LineGclng 28154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 df-trkgc 28168 df-trkgb 28169 df-trkgcb 28170 df-trkg 28173 df-cgrg 28231 |
This theorem is referenced by: symquadlem 28409 midexlem 28412 outpasch 28475 hlpasch 28476 tgasa1 28578 |
Copyright terms: Public domain | W3C validator |