![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglineinteq | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineinteq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tglineinteq.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tglineinteq.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tglineinteq.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tglineinteq.e | ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
tglineinteq.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) |
tglineinteq.2 | ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐿𝐵)) |
tglineinteq.3 | ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐿𝐷)) |
tglineinteq.4 | ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐿𝐷)) |
Ref | Expression |
---|---|
tglineinteq | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineinteq.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐿𝐵)) | |
2 | tglineinteq.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐴𝐿𝐵)) | |
3 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineintmo.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | tglineintmo.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglineinteq.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | tglineinteq.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 3, 5, 4, 6, 7, 8, 1 | tglngne 27492 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | 3, 4, 5, 6, 7, 8, 9 | tgelrnln 27572 | . . 3 ⊢ (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿) |
11 | tglineinteq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
12 | tglineinteq.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | tglineinteq.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐶𝐿𝐷)) | |
14 | 3, 5, 4, 6, 11, 12, 13 | tglngne 27492 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
15 | 3, 4, 5, 6, 11, 12, 14 | tgelrnln 27572 | . . 3 ⊢ (𝜑 → (𝐶𝐿𝐷) ∈ ran 𝐿) |
16 | tglineinteq.e | . . . 4 ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | |
17 | 3, 4, 5, 6, 7, 8, 11, 12, 16 | tglineneq 27586 | . . 3 ⊢ (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷)) |
18 | 3, 4, 5, 6, 10, 15, 17 | tglineintmo 27584 | . 2 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷))) |
19 | 1, 13 | jca 512 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷))) |
20 | tglineinteq.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐿𝐷)) | |
21 | 2, 20 | jca 512 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷))) |
22 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑋 ∈ (𝐴𝐿𝐵))) | |
23 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑋 ∈ (𝐶𝐿𝐷))) | |
24 | 22, 23 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)))) |
25 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑌 ∈ (𝐴𝐿𝐵))) | |
26 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑌 ∈ (𝐶𝐿𝐷))) | |
27 | 25, 26 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑌 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) |
28 | 24, 27 | moi 3676 | . 2 ⊢ (((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐴𝐿𝐵)) ∧ ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ∧ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)) ∧ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) → 𝑋 = 𝑌) |
29 | 1, 2, 18, 19, 21, 28 | syl212anc 1380 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∃*wmo 2536 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 TarskiGcstrkg 27369 Itvcitv 27375 LineGclng 27376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-er 8648 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-xnn0 12486 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-s2 14737 df-s3 14738 df-trkgc 27390 df-trkgb 27391 df-trkgcb 27392 df-trkg 27395 df-cgrg 27453 |
This theorem is referenced by: symquadlem 27631 midexlem 27634 outpasch 27697 hlpasch 27698 tgasa1 27800 |
Copyright terms: Public domain | W3C validator |