MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineinteq Structured version   Visualization version   GIF version

Theorem tglineinteq 28671
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
tglineinteq.1 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
tglineinteq.2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
tglineinteq.3 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
tglineinteq.4 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
Assertion
Ref Expression
tglineinteq (𝜑𝑋 = 𝑌)

Proof of Theorem tglineinteq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineinteq.1 . 2 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
2 tglineinteq.2 . 2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
3 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
6 tglineintmo.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
8 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
93, 5, 4, 6, 7, 8, 1tglngne 28576 . . . 4 (𝜑𝐴𝐵)
103, 4, 5, 6, 7, 8, 9tgelrnln 28656 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
12 tglineinteq.d . . . 4 (𝜑𝐷𝑃)
13 tglineinteq.3 . . . . 5 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
143, 5, 4, 6, 11, 12, 13tglngne 28576 . . . 4 (𝜑𝐶𝐷)
153, 4, 5, 6, 11, 12, 14tgelrnln 28656 . . 3 (𝜑 → (𝐶𝐿𝐷) ∈ ran 𝐿)
16 tglineinteq.e . . . 4 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
173, 4, 5, 6, 7, 8, 11, 12, 16tglineneq 28670 . . 3 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
183, 4, 5, 6, 10, 15, 17tglineintmo 28668 . 2 (𝜑 → ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)))
191, 13jca 511 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)))
20 tglineinteq.4 . . 3 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
212, 20jca 511 . 2 (𝜑 → (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))
22 eleq1 2832 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑋 ∈ (𝐴𝐿𝐵)))
23 eleq1 2832 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑋 ∈ (𝐶𝐿𝐷)))
2422, 23anbi12d 631 . . 3 (𝑥 = 𝑋 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷))))
25 eleq1 2832 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑌 ∈ (𝐴𝐿𝐵)))
26 eleq1 2832 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑌 ∈ (𝐶𝐿𝐷)))
2725, 26anbi12d 631 . . 3 (𝑥 = 𝑌 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷))))
2824, 27moi 3740 . 2 (((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐴𝐿𝐵)) ∧ ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ∧ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)) ∧ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) → 𝑋 = 𝑌)
291, 2, 18, 19, 21, 28syl212anc 1380 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  ∃*wmo 2541  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537
This theorem is referenced by:  symquadlem  28715  midexlem  28718  outpasch  28781  hlpasch  28782  tgasa1  28884
  Copyright terms: Public domain W3C validator