MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineinteq Structured version   Visualization version   GIF version

Theorem tglineinteq 28579
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
tglineinteq.1 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
tglineinteq.2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
tglineinteq.3 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
tglineinteq.4 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
Assertion
Ref Expression
tglineinteq (𝜑𝑋 = 𝑌)

Proof of Theorem tglineinteq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineinteq.1 . 2 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
2 tglineinteq.2 . 2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
3 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
6 tglineintmo.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
8 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
93, 5, 4, 6, 7, 8, 1tglngne 28484 . . . 4 (𝜑𝐴𝐵)
103, 4, 5, 6, 7, 8, 9tgelrnln 28564 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
12 tglineinteq.d . . . 4 (𝜑𝐷𝑃)
13 tglineinteq.3 . . . . 5 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
143, 5, 4, 6, 11, 12, 13tglngne 28484 . . . 4 (𝜑𝐶𝐷)
153, 4, 5, 6, 11, 12, 14tgelrnln 28564 . . 3 (𝜑 → (𝐶𝐿𝐷) ∈ ran 𝐿)
16 tglineinteq.e . . . 4 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
173, 4, 5, 6, 7, 8, 11, 12, 16tglineneq 28578 . . 3 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
183, 4, 5, 6, 10, 15, 17tglineintmo 28576 . 2 (𝜑 → ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)))
191, 13jca 511 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)))
20 tglineinteq.4 . . 3 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
212, 20jca 511 . 2 (𝜑 → (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))
22 eleq1 2817 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑋 ∈ (𝐴𝐿𝐵)))
23 eleq1 2817 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑋 ∈ (𝐶𝐿𝐷)))
2422, 23anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷))))
25 eleq1 2817 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑌 ∈ (𝐴𝐿𝐵)))
26 eleq1 2817 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑌 ∈ (𝐶𝐿𝐷)))
2725, 26anbi12d 632 . . 3 (𝑥 = 𝑌 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷))))
2824, 27moi 3692 . 2 (((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐴𝐿𝐵)) ∧ ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ∧ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)) ∧ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) → 𝑋 = 𝑌)
291, 2, 18, 19, 21, 28syl212anc 1382 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  ∃*wmo 2532  cfv 6514  (class class class)co 7390  Basecbs 17186  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-cgrg 28445
This theorem is referenced by:  symquadlem  28623  midexlem  28626  outpasch  28689  hlpasch  28690  tgasa1  28792
  Copyright terms: Public domain W3C validator