MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineinteq Structured version   Visualization version   GIF version

Theorem tglineinteq 26910
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
tglineinteq.1 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
tglineinteq.2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
tglineinteq.3 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
tglineinteq.4 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
Assertion
Ref Expression
tglineinteq (𝜑𝑋 = 𝑌)

Proof of Theorem tglineinteq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineinteq.1 . 2 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
2 tglineinteq.2 . 2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
3 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
6 tglineintmo.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
8 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
93, 5, 4, 6, 7, 8, 1tglngne 26815 . . . 4 (𝜑𝐴𝐵)
103, 4, 5, 6, 7, 8, 9tgelrnln 26895 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
12 tglineinteq.d . . . 4 (𝜑𝐷𝑃)
13 tglineinteq.3 . . . . 5 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
143, 5, 4, 6, 11, 12, 13tglngne 26815 . . . 4 (𝜑𝐶𝐷)
153, 4, 5, 6, 11, 12, 14tgelrnln 26895 . . 3 (𝜑 → (𝐶𝐿𝐷) ∈ ran 𝐿)
16 tglineinteq.e . . . 4 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
173, 4, 5, 6, 7, 8, 11, 12, 16tglineneq 26909 . . 3 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
183, 4, 5, 6, 10, 15, 17tglineintmo 26907 . 2 (𝜑 → ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)))
191, 13jca 511 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)))
20 tglineinteq.4 . . 3 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
212, 20jca 511 . 2 (𝜑 → (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))
22 eleq1 2826 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑋 ∈ (𝐴𝐿𝐵)))
23 eleq1 2826 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑋 ∈ (𝐶𝐿𝐷)))
2422, 23anbi12d 630 . . 3 (𝑥 = 𝑋 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷))))
25 eleq1 2826 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑌 ∈ (𝐴𝐿𝐵)))
26 eleq1 2826 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑌 ∈ (𝐶𝐿𝐷)))
2725, 26anbi12d 630 . . 3 (𝑥 = 𝑌 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷))))
2824, 27moi 3648 . 2 (((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐴𝐿𝐵)) ∧ ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ∧ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)) ∧ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) → 𝑋 = 𝑌)
291, 2, 18, 19, 21, 28syl212anc 1378 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  ∃*wmo 2538  cfv 6418  (class class class)co 7255  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776
This theorem is referenced by:  symquadlem  26954  midexlem  26957  outpasch  27020  hlpasch  27021  tgasa1  27123
  Copyright terms: Public domain W3C validator