MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineinteq Structured version   Visualization version   GIF version

Theorem tglineinteq 26428
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
tglineinteq.1 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
tglineinteq.2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
tglineinteq.3 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
tglineinteq.4 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
Assertion
Ref Expression
tglineinteq (𝜑𝑋 = 𝑌)

Proof of Theorem tglineinteq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineinteq.1 . 2 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
2 tglineinteq.2 . 2 (𝜑𝑌 ∈ (𝐴𝐿𝐵))
3 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
6 tglineintmo.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
8 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
93, 5, 4, 6, 7, 8, 1tglngne 26333 . . . 4 (𝜑𝐴𝐵)
103, 4, 5, 6, 7, 8, 9tgelrnln 26413 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
12 tglineinteq.d . . . 4 (𝜑𝐷𝑃)
13 tglineinteq.3 . . . . 5 (𝜑𝑋 ∈ (𝐶𝐿𝐷))
143, 5, 4, 6, 11, 12, 13tglngne 26333 . . . 4 (𝜑𝐶𝐷)
153, 4, 5, 6, 11, 12, 14tgelrnln 26413 . . 3 (𝜑 → (𝐶𝐿𝐷) ∈ ran 𝐿)
16 tglineinteq.e . . . 4 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
173, 4, 5, 6, 7, 8, 11, 12, 16tglineneq 26427 . . 3 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
183, 4, 5, 6, 10, 15, 17tglineintmo 26425 . 2 (𝜑 → ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)))
191, 13jca 515 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)))
20 tglineinteq.4 . . 3 (𝜑𝑌 ∈ (𝐶𝐿𝐷))
212, 20jca 515 . 2 (𝜑 → (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))
22 eleq1 2903 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑋 ∈ (𝐴𝐿𝐵)))
23 eleq1 2903 . . . 4 (𝑥 = 𝑋 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑋 ∈ (𝐶𝐿𝐷)))
2422, 23anbi12d 633 . . 3 (𝑥 = 𝑋 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷))))
25 eleq1 2903 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐴𝐿𝐵) ↔ 𝑌 ∈ (𝐴𝐿𝐵)))
26 eleq1 2903 . . . 4 (𝑥 = 𝑌 → (𝑥 ∈ (𝐶𝐿𝐷) ↔ 𝑌 ∈ (𝐶𝐿𝐷)))
2725, 26anbi12d 633 . . 3 (𝑥 = 𝑌 → ((𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ↔ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷))))
2824, 27moi 3694 . 2 (((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐴𝐿𝐵)) ∧ ∃*𝑥(𝑥 ∈ (𝐴𝐿𝐵) ∧ 𝑥 ∈ (𝐶𝐿𝐷)) ∧ ((𝑋 ∈ (𝐴𝐿𝐵) ∧ 𝑋 ∈ (𝐶𝐿𝐷)) ∧ (𝑌 ∈ (𝐴𝐿𝐵) ∧ 𝑌 ∈ (𝐶𝐿𝐷)))) → 𝑋 = 𝑌)
291, 2, 18, 19, 21, 28syl212anc 1377 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  ∃*wmo 2622  cfv 6336  (class class class)co 7138  Basecbs 16472  TarskiGcstrkg 26213  Itvcitv 26219  LineGclng 26220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-xnn0 11954  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-hash 13685  df-word 13856  df-concat 13912  df-s1 13939  df-s2 14199  df-s3 14200  df-trkgc 26231  df-trkgb 26232  df-trkgcb 26233  df-trkg 26236  df-cgrg 26294
This theorem is referenced by:  symquadlem  26472  midexlem  26475  outpasch  26538  hlpasch  26539  tgasa1  26641
  Copyright terms: Public domain W3C validator