| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3529 f1oprswap 6847 dmdcand 11994 modmul12d 13897 modnegd 13898 modadd12d 13899 exprec 14075 rpexpmord 14140 splval2 14729 dvdsmodexp 16237 eulerthlem2 16759 fermltl 16761 odzdvds 16773 fnpr2o 17527 efgredleme 19680 efgredlemc 19682 blssps 24319 blss 24320 metequiv2 24405 met1stc 24416 met2ndci 24417 metdstri 24747 xlebnum 24871 caubl 25215 divcxp 26603 cxple2a 26615 cxplead 26637 cxplt2d 26642 cxple2d 26643 mulcxpd 26644 ang180 26731 wilthlem2 26986 lgsvalmod 27234 lgsmod 27241 lgsdir2lem4 27246 lgsdirprm 27249 lgsne0 27253 lgseisen 27297 conway 27718 ax5seglem9 28871 fzm1ne1 32718 xrsmulgzz 32954 linds2eq 33359 heiborlem8 37819 cdlemd4 40202 cdleme15a 40275 cdleme17b 40288 cdleme25a 40354 cdleme25c 40356 cdleme25dN 40357 cdleme26ee 40361 tendococl 40773 tendodi1 40785 tendodi2 40786 cdlemi 40821 tendocan 40825 cdlemk5a 40836 cdlemk5 40837 cdlemk10 40844 cdlemk5u 40862 cdlemkfid1N 40922 pellexlem6 42829 acongeq 42979 jm2.25 42995 stoweidlem42 46047 stoweidlem51 46056 ldepspr 48466 |
| Copyright terms: Public domain | W3C validator |