Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl221anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 512 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
8 | 1, 2, 5, 6, 7 | syl211anc 1375 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl222anc 1385 vtocldf 3493 f1oprswap 6760 dmdcand 11780 modmul12d 13645 modnegd 13646 modadd12d 13647 exprec 13824 rpexpmord 13886 splval2 14470 dvdsmodexp 15971 eulerthlem2 16483 fermltl 16485 odzdvds 16496 fnpr2o 17268 efgredleme 19349 efgredlemc 19351 blssps 23577 blss 23578 metequiv2 23666 met1stc 23677 met2ndci 23678 metdstri 24014 xlebnum 24128 caubl 24472 divcxp 25842 cxple2a 25854 cxplead 25876 cxplt2d 25881 cxple2d 25882 mulcxpd 25883 ang180 25964 wilthlem2 26218 lgsvalmod 26464 lgsmod 26471 lgsdir2lem4 26476 lgsdirprm 26479 lgsne0 26483 lgseisen 26527 ax5seglem9 27305 fzm1ne1 31110 xrsmulgzz 31287 linds2eq 31575 conway 33993 heiborlem8 35976 cdlemd4 38215 cdleme15a 38288 cdleme17b 38301 cdleme25a 38367 cdleme25c 38369 cdleme25dN 38370 cdleme26ee 38374 tendococl 38786 tendodi1 38798 tendodi2 38799 cdlemi 38834 tendocan 38838 cdlemk5a 38849 cdlemk5 38850 cdlemk10 38857 cdlemk5u 38875 cdlemkfid1N 38935 pellexlem6 40656 acongeq 40805 jm2.25 40821 stoweidlem42 43583 stoweidlem51 43592 ldepspr 45814 |
Copyright terms: Public domain | W3C validator |