Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl221anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
8 | 1, 2, 5, 6, 7 | syl211anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl222anc 1384 vtocldf 3491 f1oprswap 6755 dmdcand 11763 modmul12d 13626 modnegd 13627 modadd12d 13628 exprec 13805 rpexpmord 13867 splval2 14451 dvdsmodexp 15952 eulerthlem2 16464 fermltl 16466 odzdvds 16477 fnpr2o 17249 efgredleme 19330 efgredlemc 19332 blssps 23558 blss 23559 metequiv2 23647 met1stc 23658 met2ndci 23659 metdstri 23995 xlebnum 24109 caubl 24453 divcxp 25823 cxple2a 25835 cxplead 25857 cxplt2d 25862 cxple2d 25863 mulcxpd 25864 ang180 25945 wilthlem2 26199 lgsvalmod 26445 lgsmod 26452 lgsdir2lem4 26457 lgsdirprm 26460 lgsne0 26464 lgseisen 26508 ax5seglem9 27286 fzm1ne1 31089 xrsmulgzz 31266 linds2eq 31554 conway 33972 heiborlem8 35955 cdlemd4 38194 cdleme15a 38267 cdleme17b 38280 cdleme25a 38346 cdleme25c 38348 cdleme25dN 38349 cdleme26ee 38353 tendococl 38765 tendodi1 38777 tendodi2 38778 cdlemi 38813 tendocan 38817 cdlemk5a 38828 cdlemk5 38829 cdlemk10 38836 cdlemk5u 38854 cdlemkfid1N 38914 pellexlem6 40636 acongeq 40785 jm2.25 40801 stoweidlem42 43537 stoweidlem51 43546 ldepspr 45766 |
Copyright terms: Public domain | W3C validator |