![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl221anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
8 | 1, 2, 5, 6, 7 | syl211anc 1375 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl222anc 1385 vtocldf 3560 f1oprswap 6893 dmdcand 12070 modmul12d 13963 modnegd 13964 modadd12d 13965 exprec 14141 rpexpmord 14205 splval2 14792 dvdsmodexp 16295 eulerthlem2 16816 fermltl 16818 odzdvds 16829 fnpr2o 17604 efgredleme 19776 efgredlemc 19778 blssps 24450 blss 24451 metequiv2 24539 met1stc 24550 met2ndci 24551 metdstri 24887 xlebnum 25011 caubl 25356 divcxp 26744 cxple2a 26756 cxplead 26778 cxplt2d 26783 cxple2d 26784 mulcxpd 26785 ang180 26872 wilthlem2 27127 lgsvalmod 27375 lgsmod 27382 lgsdir2lem4 27387 lgsdirprm 27390 lgsne0 27394 lgseisen 27438 conway 27859 ax5seglem9 28967 fzm1ne1 32797 xrsmulgzz 32994 linds2eq 33389 heiborlem8 37805 cdlemd4 40184 cdleme15a 40257 cdleme17b 40270 cdleme25a 40336 cdleme25c 40338 cdleme25dN 40339 cdleme26ee 40343 tendococl 40755 tendodi1 40767 tendodi2 40768 cdlemi 40803 tendocan 40807 cdlemk5a 40818 cdlemk5 40819 cdlemk10 40826 cdlemk5u 40844 cdlemkfid1N 40904 pellexlem6 42822 acongeq 42972 jm2.25 42988 stoweidlem42 45998 stoweidlem51 46007 ldepspr 48319 |
Copyright terms: Public domain | W3C validator |