| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3539 f1oprswap 6862 dmdcand 12046 modmul12d 13943 modnegd 13944 modadd12d 13945 exprec 14121 rpexpmord 14186 splval2 14775 dvdsmodexp 16280 eulerthlem2 16801 fermltl 16803 odzdvds 16815 fnpr2o 17571 efgredleme 19724 efgredlemc 19726 blssps 24363 blss 24364 metequiv2 24449 met1stc 24460 met2ndci 24461 metdstri 24791 xlebnum 24915 caubl 25260 divcxp 26648 cxple2a 26660 cxplead 26682 cxplt2d 26687 cxple2d 26688 mulcxpd 26689 ang180 26776 wilthlem2 27031 lgsvalmod 27279 lgsmod 27286 lgsdir2lem4 27291 lgsdirprm 27294 lgsne0 27298 lgseisen 27342 conway 27763 ax5seglem9 28916 fzm1ne1 32765 xrsmulgzz 33001 linds2eq 33396 heiborlem8 37842 cdlemd4 40220 cdleme15a 40293 cdleme17b 40306 cdleme25a 40372 cdleme25c 40374 cdleme25dN 40375 cdleme26ee 40379 tendococl 40791 tendodi1 40803 tendodi2 40804 cdlemi 40839 tendocan 40843 cdlemk5a 40854 cdlemk5 40855 cdlemk10 40862 cdlemk5u 40880 cdlemkfid1N 40940 pellexlem6 42857 acongeq 43007 jm2.25 43023 stoweidlem42 46071 stoweidlem51 46080 ldepspr 48449 |
| Copyright terms: Public domain | W3C validator |