![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl221anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
8 | 1, 2, 5, 6, 7 | syl211anc 1376 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl222anc 1386 vtocldf 3572 f1oprswap 6906 dmdcand 12099 modmul12d 13976 modnegd 13977 modadd12d 13978 exprec 14154 rpexpmord 14218 splval2 14805 dvdsmodexp 16310 eulerthlem2 16829 fermltl 16831 odzdvds 16842 fnpr2o 17617 efgredleme 19785 efgredlemc 19787 blssps 24455 blss 24456 metequiv2 24544 met1stc 24555 met2ndci 24556 metdstri 24892 xlebnum 25016 caubl 25361 divcxp 26747 cxple2a 26759 cxplead 26781 cxplt2d 26786 cxple2d 26787 mulcxpd 26788 ang180 26875 wilthlem2 27130 lgsvalmod 27378 lgsmod 27385 lgsdir2lem4 27390 lgsdirprm 27393 lgsne0 27397 lgseisen 27441 conway 27862 ax5seglem9 28970 fzm1ne1 32794 xrsmulgzz 32992 linds2eq 33374 heiborlem8 37778 cdlemd4 40158 cdleme15a 40231 cdleme17b 40244 cdleme25a 40310 cdleme25c 40312 cdleme25dN 40313 cdleme26ee 40317 tendococl 40729 tendodi1 40741 tendodi2 40742 cdlemi 40777 tendocan 40781 cdlemk5a 40792 cdlemk5 40793 cdlemk10 40800 cdlemk5u 40818 cdlemkfid1N 40878 pellexlem6 42790 acongeq 42940 jm2.25 42956 stoweidlem42 45963 stoweidlem51 45972 ldepspr 48202 |
Copyright terms: Public domain | W3C validator |