| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3515 f1oprswap 6807 dmdcand 11923 modmul12d 13829 modnegd 13830 modadd12d 13831 exprec 14007 rpexpmord 14072 splval2 14661 dvdsmodexp 16168 eulerthlem2 16690 fermltl 16692 odzdvds 16704 fnpr2o 17458 efgredleme 19653 efgredlemc 19655 blssps 24337 blss 24338 metequiv2 24423 met1stc 24434 met2ndci 24435 metdstri 24765 xlebnum 24889 caubl 25233 divcxp 26621 cxple2a 26633 cxplead 26655 cxplt2d 26660 cxple2d 26661 mulcxpd 26662 ang180 26749 wilthlem2 27004 lgsvalmod 27252 lgsmod 27259 lgsdir2lem4 27264 lgsdirprm 27267 lgsne0 27271 lgseisen 27315 conway 27738 ax5seglem9 28913 fzm1ne1 32766 xrsmulgzz 32985 linds2eq 33341 heiborlem8 37857 cdlemd4 40239 cdleme15a 40312 cdleme17b 40325 cdleme25a 40391 cdleme25c 40393 cdleme25dN 40394 cdleme26ee 40398 tendococl 40810 tendodi1 40822 tendodi2 40823 cdlemi 40858 tendocan 40862 cdlemk5a 40873 cdlemk5 40874 cdlemk10 40881 cdlemk5u 40899 cdlemkfid1N 40959 pellexlem6 42866 acongeq 43015 jm2.25 43031 stoweidlem42 46079 stoweidlem51 46088 ldepspr 48504 |
| Copyright terms: Public domain | W3C validator |