| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3517 f1oprswap 6812 dmdcand 11947 modmul12d 13850 modnegd 13851 modadd12d 13852 exprec 14028 rpexpmord 14093 splval2 14681 dvdsmodexp 16189 eulerthlem2 16711 fermltl 16713 odzdvds 16725 fnpr2o 17479 efgredleme 19640 efgredlemc 19642 blssps 24328 blss 24329 metequiv2 24414 met1stc 24425 met2ndci 24426 metdstri 24756 xlebnum 24880 caubl 25224 divcxp 26612 cxple2a 26624 cxplead 26646 cxplt2d 26651 cxple2d 26652 mulcxpd 26653 ang180 26740 wilthlem2 26995 lgsvalmod 27243 lgsmod 27250 lgsdir2lem4 27255 lgsdirprm 27258 lgsne0 27262 lgseisen 27306 conway 27728 ax5seglem9 28900 fzm1ne1 32744 xrsmulgzz 32976 linds2eq 33328 heiborlem8 37797 cdlemd4 40180 cdleme15a 40253 cdleme17b 40266 cdleme25a 40332 cdleme25c 40334 cdleme25dN 40335 cdleme26ee 40339 tendococl 40751 tendodi1 40763 tendodi2 40764 cdlemi 40799 tendocan 40803 cdlemk5a 40814 cdlemk5 40815 cdlemk10 40822 cdlemk5u 40840 cdlemkfid1N 40900 pellexlem6 42807 acongeq 42956 jm2.25 42972 stoweidlem42 46024 stoweidlem51 46033 ldepspr 48459 |
| Copyright terms: Public domain | W3C validator |