| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3514 f1oprswap 6813 dmdcand 11933 modmul12d 13834 modnegd 13835 modadd12d 13836 exprec 14012 rpexpmord 14077 splval2 14666 dvdsmodexp 16173 eulerthlem2 16695 fermltl 16697 odzdvds 16709 fnpr2o 17463 efgredleme 19657 efgredlemc 19659 blssps 24340 blss 24341 metequiv2 24426 met1stc 24437 met2ndci 24438 metdstri 24768 xlebnum 24892 caubl 25236 divcxp 26624 cxple2a 26636 cxplead 26658 cxplt2d 26663 cxple2d 26664 mulcxpd 26665 ang180 26752 wilthlem2 27007 lgsvalmod 27255 lgsmod 27262 lgsdir2lem4 27267 lgsdirprm 27270 lgsne0 27274 lgseisen 27318 conway 27741 ax5seglem9 28917 fzm1ne1 32775 xrsmulgzz 32997 linds2eq 33353 heiborlem8 37878 cdlemd4 40320 cdleme15a 40393 cdleme17b 40406 cdleme25a 40472 cdleme25c 40474 cdleme25dN 40475 cdleme26ee 40479 tendococl 40891 tendodi1 40903 tendodi2 40904 cdlemi 40939 tendocan 40943 cdlemk5a 40954 cdlemk5 40955 cdlemk10 40962 cdlemk5u 40980 cdlemkfid1N 41040 pellexlem6 42951 acongeq 43100 jm2.25 43116 stoweidlem42 46164 stoweidlem51 46173 ldepspr 48598 |
| Copyright terms: Public domain | W3C validator |