| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl221anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl221anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl221anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl221anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) | |
| 8 | 1, 2, 5, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl222anc 1388 vtocldf 3526 f1oprswap 6844 dmdcand 11987 modmul12d 13890 modnegd 13891 modadd12d 13892 exprec 14068 rpexpmord 14133 splval2 14722 dvdsmodexp 16230 eulerthlem2 16752 fermltl 16754 odzdvds 16766 fnpr2o 17520 efgredleme 19673 efgredlemc 19675 blssps 24312 blss 24313 metequiv2 24398 met1stc 24409 met2ndci 24410 metdstri 24740 xlebnum 24864 caubl 25208 divcxp 26596 cxple2a 26608 cxplead 26630 cxplt2d 26635 cxple2d 26636 mulcxpd 26637 ang180 26724 wilthlem2 26979 lgsvalmod 27227 lgsmod 27234 lgsdir2lem4 27239 lgsdirprm 27242 lgsne0 27246 lgseisen 27290 conway 27711 ax5seglem9 28864 fzm1ne1 32711 xrsmulgzz 32947 linds2eq 33352 heiborlem8 37812 cdlemd4 40195 cdleme15a 40268 cdleme17b 40281 cdleme25a 40347 cdleme25c 40349 cdleme25dN 40350 cdleme26ee 40354 tendococl 40766 tendodi1 40778 tendodi2 40779 cdlemi 40814 tendocan 40818 cdlemk5a 40829 cdlemk5 40830 cdlemk10 40837 cdlemk5u 40855 cdlemkfid1N 40915 pellexlem6 42822 acongeq 42972 jm2.25 42988 stoweidlem42 46040 stoweidlem51 46049 ldepspr 48462 |
| Copyright terms: Public domain | W3C validator |