![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemu | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 36604. (Contributed by NM, 23-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
4atexlemu | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 1 | 4atexlemk 36576 | . 2 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | 4atexlemw 36577 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
4 | 1 | 4atexlempw 36578 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
5 | 1 | 4atexlemq 36580 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
6 | 1 | 4atexlempnq 36584 | . 2 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
7 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
9 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
10 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
13 | 7, 8, 9, 10, 11, 12 | lhpat2 36574 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
14 | 2, 3, 4, 5, 6, 13 | syl212anc 1360 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 lecple 16418 joincjn 17402 meetcmee 17403 Atomscatm 35792 HLchlt 35879 LHypclh 36513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-proset 17386 df-poset 17404 df-plt 17416 df-lub 17432 df-glb 17433 df-join 17434 df-meet 17435 df-p0 17497 df-p1 17498 df-lat 17504 df-clat 17566 df-oposet 35705 df-ol 35707 df-oml 35708 df-covers 35795 df-ats 35796 df-atl 35827 df-cvlat 35851 df-hlat 35880 df-lhyp 36517 |
This theorem is referenced by: 4atexlemunv 36595 4atexlemtlw 36596 4atexlemntlpq 36597 4atexlemc 36598 4atexlemnclw 36599 |
Copyright terms: Public domain | W3C validator |