![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemu | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 39402. (Contributed by NM, 23-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) |
4thatlem0.l | β’ β€ = (leβπΎ) |
4thatlem0.j | β’ β¨ = (joinβπΎ) |
4thatlem0.m | β’ β§ = (meetβπΎ) |
4thatlem0.a | β’ π΄ = (AtomsβπΎ) |
4thatlem0.h | β’ π» = (LHypβπΎ) |
4thatlem0.u | β’ π = ((π β¨ π) β§ π) |
Ref | Expression |
---|---|
4atexlemu | β’ (π β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π β π΄ β§ Β¬ π β€ π β§ (π β¨ π ) = (π β¨ π )) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) | |
2 | 1 | 4atexlemk 39374 | . 2 β’ (π β πΎ β HL) |
3 | 1 | 4atexlemw 39375 | . 2 β’ (π β π β π») |
4 | 1 | 4atexlempw 39376 | . 2 β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
5 | 1 | 4atexlemq 39378 | . 2 β’ (π β π β π΄) |
6 | 1 | 4atexlempnq 39382 | . 2 β’ (π β π β π) |
7 | 4thatlem0.l | . . 3 β’ β€ = (leβπΎ) | |
8 | 4thatlem0.j | . . 3 β’ β¨ = (joinβπΎ) | |
9 | 4thatlem0.m | . . 3 β’ β§ = (meetβπΎ) | |
10 | 4thatlem0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
11 | 4thatlem0.h | . . 3 β’ π» = (LHypβπΎ) | |
12 | 4thatlem0.u | . . 3 β’ π = ((π β¨ π) β§ π) | |
13 | 7, 8, 9, 10, 11, 12 | lhpat2 39372 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
14 | 2, 3, 4, 5, 6, 13 | syl212anc 1377 | 1 β’ (π β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 class class class wbr 5138 βcfv 6533 (class class class)co 7401 lecple 17202 joincjn 18265 meetcmee 18266 Atomscatm 38589 HLchlt 38676 LHypclh 39311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-lhyp 39315 |
This theorem is referenced by: 4atexlemunv 39393 4atexlemtlw 39394 4atexlemntlpq 39395 4atexlemc 39396 4atexlemnclw 39397 |
Copyright terms: Public domain | W3C validator |