MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl231anc Structured version   Visualization version   GIF version

Theorem syl231anc 1392
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl231anc.7 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
syl231anc (𝜑𝜎)

Proof of Theorem syl231anc
StepHypRef Expression
1 syl3anc.1 . . 3 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
31, 2jca 511 . 2 (𝜑 → (𝜓𝜒))
4 syl3anc.3 . 2 (𝜑𝜃)
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl231anc.7 . 2 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ 𝜁) → 𝜎)
93, 4, 5, 6, 7, 8syl131anc 1385 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl232anc  1399  isosctr  26759  axeuclid  28943  dalawlem3  39992  dalawlem6  39995  cdlemd7  40323  cdleme18c  40412  cdlemi  40939  cdlemk7  40967  cdlemk11  40968  cdlemk7u  40989  cdlemk11u  40990  cdlemk19xlem  41061  cdlemk55u1  41084  cdlemk56  41090
  Copyright terms: Public domain W3C validator