MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl231anc Structured version   Visualization version   GIF version

Theorem syl231anc 1390
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl231anc.7 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
syl231anc (𝜑𝜎)

Proof of Theorem syl231anc
StepHypRef Expression
1 syl3anc.1 . . 3 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
31, 2jca 511 . 2 (𝜑 → (𝜓𝜒))
4 syl3anc.3 . 2 (𝜑𝜃)
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl231anc.7 . 2 (((𝜓𝜒) ∧ (𝜃𝜏𝜂) ∧ 𝜁) → 𝜎)
93, 4, 5, 6, 7, 8syl131anc 1383 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  syl232anc  1397  isosctr  26882  axeuclid  28996  dalawlem3  39830  dalawlem6  39833  cdlemd7  40161  cdleme18c  40250  cdlemi  40777  cdlemk7  40805  cdlemk11  40806  cdlemk7u  40827  cdlemk11u  40828  cdlemk19xlem  40899  cdlemk55u1  40922  cdlemk56  40928
  Copyright terms: Public domain W3C validator