Proof of Theorem cdlemi
| Step | Hyp | Ref
| Expression |
| 1 | | simp11l 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ HL) |
| 2 | | simp11r 1286 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑊 ∈ 𝐻) |
| 3 | | simp2l 1200 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑈 ∈ 𝐸) |
| 4 | | simp13 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) |
| 5 | | simp2r 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 6 | | cdlemi.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 7 | | cdlemi.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 8 | | cdlemi.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 9 | | cdlemi.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 10 | | cdlemi.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 11 | | cdlemi.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 12 | | cdlemi.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 13 | | cdlemi.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 14 | | cdlemi.e |
. . . . . 6
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 15 | 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemi1 40820 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 16 | 1, 2, 3, 4, 5, 15 | syl221anc 1383 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺))) |
| 17 | | simp12 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) |
| 18 | 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemi2 40821 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐺)‘𝑃) ≤ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 19 | 1, 2, 3, 17, 4, 5,
18 | syl231anc 1392 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) ≤ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 20 | 1 | hllatd 39365 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ Lat) |
| 21 | | simp11 1204 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 22 | 11, 12, 14 | tendocl 40769 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) → (𝑈‘𝐺) ∈ 𝑇) |
| 23 | 21, 3, 4, 22 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑈‘𝐺) ∈ 𝑇) |
| 24 | | simp2rl 1243 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐴) |
| 25 | 6, 10 | atbase 39290 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 26 | 24, 25 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐵) |
| 27 | 6, 11, 12 | ltrncl 40127 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐺) ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝑈‘𝐺)‘𝑃) ∈ 𝐵) |
| 28 | 21, 23, 26, 27 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) ∈ 𝐵) |
| 29 | 6, 11, 12, 13 | trlcl 40166 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ 𝐵) |
| 30 | 21, 4, 29 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ∈ 𝐵) |
| 31 | 6, 8 | latjcl 18484 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 32 | 20, 26, 30, 31 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
| 33 | 11, 12, 14 | tendocl 40769 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈‘𝐹) ∈ 𝑇) |
| 34 | 21, 3, 17, 33 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑈‘𝐹) ∈ 𝑇) |
| 35 | 6, 11, 12 | ltrncl 40127 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐹) ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝑈‘𝐹)‘𝑃) ∈ 𝐵) |
| 36 | 21, 34, 26, 35 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐹)‘𝑃) ∈ 𝐵) |
| 37 | 11, 12 | ltrncnv 40148 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
| 38 | 21, 17, 37 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ◡𝐹 ∈ 𝑇) |
| 39 | 11, 12 | ltrnco 40721 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 40 | 21, 4, 38, 39 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
| 41 | 6, 11, 12, 13 | trlcl 40166 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 42 | 21, 40, 41 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
| 43 | 6, 8 | latjcl 18484 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑈‘𝐹)‘𝑃) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) → (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 44 | 20, 36, 42, 43 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
| 45 | 6, 7, 9 | latlem12 18511 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (((𝑈‘𝐺)‘𝑃) ∈ 𝐵 ∧ (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵 ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵)) → ((((𝑈‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑈‘𝐺)‘𝑃) ≤ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ↔ ((𝑈‘𝐺)‘𝑃) ≤ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 46 | 20, 28, 32, 44, 45 | syl13anc 1374 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((((𝑈‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑈‘𝐺)‘𝑃) ≤ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ↔ ((𝑈‘𝐺)‘𝑃) ≤ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 47 | 16, 19, 46 | mpbi2and 712 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) ≤ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 48 | | hlatl 39361 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 49 | 1, 48 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ AtLat) |
| 50 | 7, 10, 11, 12 | ltrnat 40142 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐺) ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → ((𝑈‘𝐺)‘𝑃) ∈ 𝐴) |
| 51 | 21, 23, 24, 50 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) ∈ 𝐴) |
| 52 | 7, 10, 11, 12 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝐹) ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (((𝑈‘𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈‘𝐹)‘𝑃) ≤ 𝑊)) |
| 53 | 21, 34, 5, 52 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑈‘𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈‘𝐹)‘𝑃) ≤ 𝑊)) |
| 54 | 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemi1 40820 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐹)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐹))) |
| 55 | 1, 2, 3, 17, 5, 54 | syl221anc 1383 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐹)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐹))) |
| 56 | 5, 53, 55 | 3jca 1129 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (((𝑈‘𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈‘𝐹)‘𝑃) ≤ 𝑊) ∧ ((𝑈‘𝐹)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐹)))) |
| 57 | | eqid 2737 |
. . . . . . 7
⊢ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 58 | 6, 7, 8, 9, 10, 11, 12, 13, 57 | cdlemh 40819 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (((𝑈‘𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈‘𝐹)‘𝑃) ≤ 𝑊) ∧ ((𝑈‘𝐹)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ 𝑊)) |
| 59 | 58 | simpld 494 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (((𝑈‘𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈‘𝐹)‘𝑃) ≤ 𝑊) ∧ ((𝑈‘𝐹)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∈ 𝐴) |
| 60 | 56, 59 | syld3an2 1413 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∈ 𝐴) |
| 61 | 7, 10 | atcmp 39312 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ ((𝑈‘𝐺)‘𝑃) ∈ 𝐴 ∧ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∈ 𝐴) → (((𝑈‘𝐺)‘𝑃) ≤ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ↔ ((𝑈‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 62 | 49, 51, 60, 61 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑈‘𝐺)‘𝑃) ≤ ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ↔ ((𝑈‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 63 | 47, 62 | mpbid 232 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 64 | | cdlemi.s |
. 2
⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 65 | 63, 64 | eqtr4di 2795 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) = 𝑆) |