Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi Structured version   Visualization version   GIF version

Theorem cdlemi 37825
Description: Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemi.s 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemi ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)

Proof of Theorem cdlemi
StepHypRef Expression
1 simp11l 1278 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp11r 1279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
3 simp2l 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑈𝐸)
4 simp13 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
5 simp2r 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 cdlemi.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdlemi.l . . . . . 6 = (le‘𝐾)
8 cdlemi.j . . . . . 6 = (join‘𝐾)
9 cdlemi.m . . . . . 6 = (meet‘𝐾)
10 cdlemi.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemi.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemi.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemi.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemi.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 37823 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
161, 2, 3, 4, 5, 15syl221anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
17 simp12 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
186, 7, 8, 9, 10, 11, 12, 13, 14cdlemi2 37824 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
191, 2, 3, 17, 4, 5, 18syl231anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
201hllatd 36369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
21 simp11 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2211, 12, 14tendocl 37772 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
2321, 3, 4, 22syl3anc 1365 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐺) ∈ 𝑇)
24 simp2rl 1236 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
256, 10atbase 36294 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2624, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
276, 11, 12ltrncl 37130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
2821, 23, 26, 27syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
296, 11, 12, 13trlcl 37169 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
3021, 4, 29syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
316, 8latjcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3220, 26, 30, 31syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3311, 12, 14tendocl 37772 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
3421, 3, 17, 33syl3anc 1365 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐹) ∈ 𝑇)
356, 11, 12ltrncl 37130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇𝑃𝐵) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3621, 34, 26, 35syl3anc 1365 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3711, 12ltrncnv 37151 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
3821, 17, 37syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
3911, 12ltrnco 37724 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
4021, 4, 38, 39syl3anc 1365 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
416, 11, 12, 13trlcl 37169 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
4221, 40, 41syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
436, 8latjcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑈𝐹)‘𝑃) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
4420, 36, 42, 43syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
456, 7, 9latlem12 17680 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑈𝐺)‘𝑃) ∈ 𝐵 ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4620, 28, 32, 44, 45syl13anc 1366 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4716, 19, 46mpbi2and 708 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
48 hlatl 36365 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
491, 48syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ AtLat)
507, 10, 11, 12ltrnat 37145 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐴) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
5121, 23, 24, 50syl3anc 1365 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
527, 10, 11, 12ltrnel 37144 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
5321, 34, 5, 52syl3anc 1365 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
546, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 37823 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
551, 2, 3, 17, 5, 54syl221anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
565, 53, 553jca 1122 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))))
57 eqid 2825 . . . . . . 7 ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
586, 7, 8, 9, 10, 11, 12, 13, 57cdlemh 37822 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) 𝑊))
5958simpld 495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
6056, 59syld3an2 1405 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
617, 10atcmp 36316 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐴 ∧ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6249, 51, 60, 61syl3anc 1365 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6347, 62mpbid 233 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
64 cdlemi.s . 2 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
6563, 64syl6eqr 2878 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062   I cid 5457  ccnv 5552  cres 5555  ccom 5557  cfv 6351  (class class class)co 7151  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36268  AtLatcal 36269  HLchlt 36355  LHypclh 36989  LTrncltrn 37106  trLctrl 37163  TEndoctendo 37757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-riotaBAD 35958
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-undef 7933  df-map 8401  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36181  df-ol 36183  df-oml 36184  df-covers 36271  df-ats 36272  df-atl 36303  df-cvlat 36327  df-hlat 36356  df-llines 36503  df-lplanes 36504  df-lvols 36505  df-lines 36506  df-psubsp 36508  df-pmap 36509  df-padd 36801  df-lhyp 36993  df-laut 36994  df-ldil 37109  df-ltrn 37110  df-trl 37164  df-tendo 37760
This theorem is referenced by:  cdlemj1  37826
  Copyright terms: Public domain W3C validator