Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi Structured version   Visualization version   GIF version

Theorem cdlemi 38761
Description: Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdlemi.s 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemi ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)

Proof of Theorem cdlemi
StepHypRef Expression
1 simp11l 1282 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2 simp11r 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
3 simp2l 1197 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑈𝐸)
4 simp13 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
5 simp2r 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 cdlemi.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdlemi.l . . . . . 6 = (le‘𝐾)
8 cdlemi.j . . . . . 6 = (join‘𝐾)
9 cdlemi.m . . . . . 6 = (meet‘𝐾)
10 cdlemi.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemi.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemi.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemi.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemi.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 38759 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
161, 2, 3, 4, 5, 15syl221anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
17 simp12 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
186, 7, 8, 9, 10, 11, 12, 13, 14cdlemi2 38760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
191, 2, 3, 17, 4, 5, 18syl231anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
201hllatd 37305 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
21 simp11 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2211, 12, 14tendocl 38708 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
2321, 3, 4, 22syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐺) ∈ 𝑇)
24 simp2rl 1240 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
256, 10atbase 37230 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2624, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
276, 11, 12ltrncl 38066 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
2821, 23, 26, 27syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
296, 11, 12, 13trlcl 38105 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
3021, 4, 29syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
316, 8latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3220, 26, 30, 31syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
3311, 12, 14tendocl 38708 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐹𝑇) → (𝑈𝐹) ∈ 𝑇)
3421, 3, 17, 33syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑈𝐹) ∈ 𝑇)
356, 11, 12ltrncl 38066 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇𝑃𝐵) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3621, 34, 26, 35syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) ∈ 𝐵)
3711, 12ltrncnv 38087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
3821, 17, 37syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
3911, 12ltrnco 38660 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
4021, 4, 38, 39syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
416, 11, 12, 13trlcl 38105 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
4221, 40, 41syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
436, 8latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑈𝐹)‘𝑃) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
4420, 36, 42, 43syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
456, 7, 9latlem12 18099 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑈𝐺)‘𝑃) ∈ 𝐵 ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))) ∈ 𝐵)) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4620, 28, 32, 44, 45syl13anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
4716, 19, 46mpbi2and 708 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
48 hlatl 37301 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
491, 48syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ AtLat)
507, 10, 11, 12ltrnat 38081 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐴) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
5121, 23, 24, 50syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
527, 10, 11, 12ltrnel 38080 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐹) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
5321, 34, 5, 52syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊))
546, 7, 8, 9, 10, 11, 12, 13, 14cdlemi1 38759 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
551, 2, 3, 17, 5, 54syl221anc 1379 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹)))
565, 53, 553jca 1126 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))))
57 eqid 2738 . . . . . . 7 ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
586, 7, 8, 9, 10, 11, 12, 13, 57cdlemh 38758 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) 𝑊))
5958simpld 494 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑈𝐹)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝐹)‘𝑃) 𝑊) ∧ ((𝑈𝐹)‘𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
6056, 59syld3an2 1409 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴)
617, 10atcmp 37252 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐴 ∧ ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6249, 51, 60, 61syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑈𝐺)‘𝑃) ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))) ↔ ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))))
6347, 62mpbid 231 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹)))))
64 cdlemi.s . 2 𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
6563, 64eqtr4di 2797 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070   I cid 5479  ccnv 5579  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  AtLatcal 37205  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696
This theorem is referenced by:  cdlemj1  38762
  Copyright terms: Public domain W3C validator