MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Visualization version   GIF version

Theorem syl312anc 1393
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl312anc.7 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl312anc (𝜑𝜎)

Proof of Theorem syl312anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
75, 6jca 511 . 2 (𝜑 → (𝜂𝜁))
8 syl312anc.7 . 2 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl311anc 1386 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  pythagtriplem19  16871  cdleme27cl  40368  cdlemefs27cl  40415  cdleme32fvcl  40442  cdlemg16ALTN  40660  cdlemg27a  40694  cdlemg31c  40701  cdlemg39  40718  cdlemk11ta  40931  cdlemk19ylem  40932  cdlemk11tc  40947  cdlemk45  40949  dihmeetlem12N  41320  dihjatc  41419  flt4lem5c  42664  flt4lem5d  42665  flt4lem5e  42666
  Copyright terms: Public domain W3C validator