MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Visualization version   GIF version

Theorem syl312anc 1393
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl312anc.7 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl312anc (𝜑𝜎)

Proof of Theorem syl312anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
75, 6jca 511 . 2 (𝜑 → (𝜂𝜁))
8 syl312anc.7 . 2 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl311anc 1386 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pythagtriplem19  16747  cdleme27cl  40486  cdlemefs27cl  40533  cdleme32fvcl  40560  cdlemg16ALTN  40778  cdlemg27a  40812  cdlemg31c  40819  cdlemg39  40836  cdlemk11ta  41049  cdlemk19ylem  41050  cdlemk11tc  41065  cdlemk45  41067  dihmeetlem12N  41438  dihjatc  41537  flt4lem5c  42773  flt4lem5d  42774  flt4lem5e  42775
  Copyright terms: Public domain W3C validator