| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl312anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl312anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl312anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁)) |
| 8 | syl312anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 2, 3, 4, 7, 8 | syl311anc 1386 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem19 16745 cdleme27cl 40411 cdlemefs27cl 40458 cdleme32fvcl 40485 cdlemg16ALTN 40703 cdlemg27a 40737 cdlemg31c 40744 cdlemg39 40761 cdlemk11ta 40974 cdlemk19ylem 40975 cdlemk11tc 40990 cdlemk45 40992 dihmeetlem12N 41363 dihjatc 41462 flt4lem5c 42693 flt4lem5d 42694 flt4lem5e 42695 |
| Copyright terms: Public domain | W3C validator |