MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl312anc Structured version   Visualization version   GIF version

Theorem syl312anc 1390
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl312anc.7 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl312anc (𝜑𝜎)

Proof of Theorem syl312anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . 2 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
75, 6jca 512 . 2 (𝜑 → (𝜂𝜁))
8 syl312anc.7 . 2 (((𝜓𝜒𝜃) ∧ 𝜏 ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl311anc 1383 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  pythagtriplem19  16534  cdleme27cl  38380  cdlemefs27cl  38427  cdleme32fvcl  38454  cdlemg16ALTN  38672  cdlemg27a  38706  cdlemg31c  38713  cdlemg39  38730  cdlemk11ta  38943  cdlemk19ylem  38944  cdlemk11tc  38959  cdlemk45  38961  dihmeetlem12N  39332  dihjatc  39431  flt4lem5c  40491  flt4lem5d  40492  flt4lem5e  40493
  Copyright terms: Public domain W3C validator