Proof of Theorem cdlemk11
Step | Hyp | Ref
| Expression |
1 | | cdlemk.b |
. 2
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemk.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | simp11l 1283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37386 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐾 ∈ Lat) |
5 | | simp1 1135 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
6 | | simp21l 1289 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑁 ∈ 𝑇) |
7 | | simp22 1206 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | | simp23 1207 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
9 | | simp311 1319 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐹 ≠ ( I ↾ 𝐵)) |
10 | | simp312 1320 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐺 ≠ ( I ↾ 𝐵)) |
11 | | simp32 1209 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
12 | | cdlemk.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
13 | | cdlemk.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
14 | | cdlemk.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
15 | | cdlemk.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
16 | | cdlemk.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
17 | | cdlemk.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
18 | | cdlemk.s |
. . . . 5
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
19 | 1, 2, 12, 13, 14, 15, 16, 17, 18 | cdlemksat 38868 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ∈ 𝐴) |
20 | 5, 6, 7, 8, 9, 10,
11, 19 | syl133anc 1392 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ∈ 𝐴) |
21 | 1, 13 | atbase 37311 |
. . 3
⊢ (((𝑆‘𝐺)‘𝑃) ∈ 𝐴 → ((𝑆‘𝐺)‘𝑃) ∈ 𝐵) |
22 | 20, 21 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ∈ 𝐵) |
23 | | simp11 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | | simp12 1203 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) |
25 | | simp21r 1290 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑋 ∈ 𝑇) |
26 | | simp313 1321 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑋 ≠ ( I ↾ 𝐵)) |
27 | | simp33 1210 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝑋) ≠ (𝑅‘𝐹)) |
28 | 1, 2, 12, 13, 14, 15, 16, 17, 18 | cdlemksat 38868 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
29 | 23, 24, 25, 6, 7, 8,
9, 26, 27, 28 | syl333anc 1401 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
30 | 1, 13 | atbase 37311 |
. . . 4
⊢ (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 → ((𝑆‘𝑋)‘𝑃) ∈ 𝐵) |
31 | 29, 30 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐵) |
32 | | simp11r 1284 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑊 ∈ 𝐻) |
33 | | simp13 1204 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐺 ∈ 𝑇) |
34 | | simp22l 1291 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑃 ∈ 𝐴) |
35 | | cdlemk.v |
. . . . 5
⊢ 𝑉 = (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
36 | 1, 2, 12, 13, 14, 15, 16, 17, 35 | cdlemkvcl 38864 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝑉 ∈ 𝐵) |
37 | 3, 32, 24, 33, 25, 34, 36 | syl231anc 1389 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑉 ∈ 𝐵) |
38 | 1, 12 | latjcl 18167 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑆‘𝑋)‘𝑃) ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) ∈ 𝐵) |
39 | 4, 31, 37, 38 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) ∈ 𝐵) |
40 | 14, 15 | ltrncnv 38168 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
41 | 23, 33, 40 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ◡𝐺 ∈ 𝑇) |
42 | 14, 15 | ltrnco 38741 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) |
43 | 23, 25, 41, 42 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑋 ∘ ◡𝐺) ∈ 𝑇) |
44 | 1, 14, 15, 16 | trlcl 38186 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∘ ◡𝐺) ∈ 𝑇) → (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐵) |
45 | 23, 43, 44 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐵) |
46 | 1, 12 | latjcl 18167 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑆‘𝑋)‘𝑃) ∈ 𝐵 ∧ (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐵) → (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))) ∈ 𝐵) |
47 | 4, 31, 45, 46 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))) ∈ 𝐵) |
48 | 1, 2, 12, 13, 14, 15, 16, 17, 18, 35 | cdlemk7 38870 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ 𝑉)) |
49 | 1, 2, 12, 13, 14, 15, 16, 17, 35 | cdlemk10 38865 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑉 ≤ (𝑅‘(𝑋 ∘ ◡𝐺))) |
50 | 3, 32, 24, 33, 25, 7, 49 | syl231anc 1389 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑉 ≤ (𝑅‘(𝑋 ∘ ◡𝐺))) |
51 | 1, 2, 12 | latjlej2 18182 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑉 ∈ 𝐵 ∧ (𝑅‘(𝑋 ∘ ◡𝐺)) ∈ 𝐵 ∧ ((𝑆‘𝑋)‘𝑃) ∈ 𝐵)) → (𝑉 ≤ (𝑅‘(𝑋 ∘ ◡𝐺)) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))))) |
52 | 4, 37, 45, 31, 51 | syl13anc 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑉 ≤ (𝑅‘(𝑋 ∘ ◡𝐺)) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺))))) |
53 | 50, 52 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |
54 | 1, 2, 4, 22, 39, 47, 48, 53 | lattrd 18174 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐺)))) |