Proof of Theorem dalawlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . 2
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 2 |  | dalawlem.l | . 2
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | simp11 1203 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 4 | 3 | hllatd 39366 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 5 |  | simp22 1207 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 6 |  | simp32 1210 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ 𝐴) | 
| 7 |  | dalawlem.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 8 |  | dalawlem.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 1, 7, 8 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) | 
| 10 | 3, 5, 6, 9 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) | 
| 11 |  | simp21 1206 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 12 | 1, 8 | atbase 39291 | . . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 13 | 11, 12 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) | 
| 14 | 1, 7 | latjcl 18485 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 15 | 4, 10, 13, 14 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 16 |  | simp31 1209 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | 
| 17 | 1, 8 | atbase 39291 | . . . 4
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) | 
| 18 | 16, 17 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) | 
| 19 |  | dalawlem.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 20 | 1, 19 | latmcl 18486 | . . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ∈ (Base‘𝐾)) | 
| 21 | 4, 15, 18, 20 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ∈ (Base‘𝐾)) | 
| 22 |  | simp23 1208 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | 
| 23 | 1, 7, 8 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 24 | 3, 5, 22, 23 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 25 |  | simp33 1211 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) | 
| 26 | 1, 8 | atbase 39291 | . . . . 5
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) | 
| 27 | 25, 26 | syl 17 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ (Base‘𝐾)) | 
| 28 | 1, 19 | latmcl 18486 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) | 
| 29 | 4, 24, 27, 28 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) | 
| 30 | 1, 7, 8 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 31 | 3, 22, 11, 30 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 32 | 1, 7, 8 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 33 | 3, 25, 16, 32 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 34 | 1, 19 | latmcl 18486 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 35 | 4, 31, 33, 34 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 36 | 1, 7 | latjcl 18485 | . . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) | 
| 37 | 4, 29, 35, 36 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) | 
| 38 | 1, 7, 8 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 39 | 3, 6, 25, 38 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 40 | 1, 19 | latmcl 18486 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) | 
| 41 | 4, 24, 39, 40 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) | 
| 42 | 1, 7 | latjcl 18485 | . . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) | 
| 43 | 4, 41, 35, 42 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) | 
| 44 | 1, 8 | atbase 39291 | . . . . . . . . . 10
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 45 | 5, 44 | syl 17 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) | 
| 46 | 1, 19 | latmcl 18486 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑄 ∧ 𝑈) ∈ (Base‘𝐾)) | 
| 47 | 4, 45, 27, 46 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ 𝑈) ∈ (Base‘𝐾)) | 
| 48 | 1, 7, 8 | hlatjcl 39369 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 49 | 3, 11, 16, 48 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 50 | 1, 19 | latmcl 18486 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾)) | 
| 51 | 4, 49, 45, 50 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾)) | 
| 52 | 1, 7 | latjcl 18485 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∧ 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾)) | 
| 53 | 4, 47, 51, 52 | syl3anc 1372 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾)) | 
| 54 | 1, 7 | latjcl 18485 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ∈ (Base‘𝐾)) | 
| 55 | 4, 13, 53, 54 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ∈ (Base‘𝐾)) | 
| 56 | 1, 8 | atbase 39291 | . . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) | 
| 57 | 22, 56 | syl 17 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) | 
| 58 | 1, 7 | latjcl 18485 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) | 
| 59 | 4, 57, 29, 58 | syl3anc 1372 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) | 
| 60 | 1, 7 | latjcl 18485 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) ∈ (Base‘𝐾)) | 
| 61 | 4, 13, 59, 60 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) ∈ (Base‘𝐾)) | 
| 62 | 1, 7 | latjcl 18485 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∧ 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝑄 ∧ 𝑈) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 63 | 4, 47, 13, 62 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 64 | 1, 2, 7, 19 | latmlej22 18527 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾) ∧ ((𝑄 ∧ 𝑈) ∨ 𝑃) ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∧ 𝑈) ∨ 𝑃) ∨ 𝑆)) | 
| 65 | 4, 18, 15, 63, 64 | syl13anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∧ 𝑈) ∨ 𝑃) ∨ 𝑆)) | 
| 66 | 1, 7 | latjass 18529 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∧ 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 ∧ 𝑈) ∨ 𝑃) ∨ 𝑆) = ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆))) | 
| 67 | 4, 47, 13, 18, 66 | syl13anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∧ 𝑈) ∨ 𝑃) ∨ 𝑆) = ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆))) | 
| 68 | 65, 67 | breqtrd 5168 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆))) | 
| 69 | 1, 19 | latmcl 18486 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 70 | 4, 10, 49, 69 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 71 | 1, 7 | latjcl 18485 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 72 | 4, 70, 13, 71 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) ∈ (Base‘𝐾)) | 
| 73 | 1, 7, 8 | hlatjcl 39369 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 74 | 3, 11, 5, 73 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 75 | 2, 7, 8 | hlatlej2 39378 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) | 
| 76 | 3, 11, 16, 75 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ≤ (𝑃 ∨ 𝑆)) | 
| 77 | 1, 2, 19 | latmlem2 18516 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾))) → (𝑆 ≤ (𝑃 ∨ 𝑆) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ (𝑃 ∨ 𝑆)))) | 
| 78 | 4, 18, 49, 15, 77 | syl13anc 1373 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑆 ≤ (𝑃 ∨ 𝑆) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ (𝑃 ∨ 𝑆)))) | 
| 79 | 76, 78 | mpd 15 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ (𝑃 ∨ 𝑆))) | 
| 80 | 2, 7, 8 | hlatlej1 39377 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑆)) | 
| 81 | 3, 11, 16, 80 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ≤ (𝑃 ∨ 𝑆)) | 
| 82 | 1, 2, 7, 19, 8 | atmod4i1 39869 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑆)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) = (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ (𝑃 ∨ 𝑆))) | 
| 83 | 3, 11, 10, 49, 81, 82 | syl131anc 1384 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) = (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ (𝑃 ∨ 𝑆))) | 
| 84 | 79, 83 | breqtrrd 5170 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃)) | 
| 85 | 1, 19 | latmcom 18509 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) | 
| 86 | 4, 10, 49, 85 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) | 
| 87 |  | simp12 1204 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) | 
| 88 | 86, 87 | eqbrtrd 5164 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑃 ∨ 𝑄)) | 
| 89 | 2, 7, 8 | hlatlej1 39377 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 90 | 3, 11, 5, 89 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 91 | 1, 2, 7 | latjle12 18496 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) ≤ (𝑃 ∨ 𝑄))) | 
| 92 | 4, 70, 13, 74, 91 | syl13anc 1373 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) ≤ (𝑃 ∨ 𝑄))) | 
| 93 | 88, 90, 92 | mpbi2and 712 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∨ 𝑃) ≤ (𝑃 ∨ 𝑄)) | 
| 94 | 1, 2, 4, 21, 72, 74, 84, 93 | lattrd 18492 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑃 ∨ 𝑄)) | 
| 95 | 1, 7 | latjcl 18485 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∧ 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 96 | 4, 47, 49, 95 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) | 
| 97 | 1, 2, 19 | latlem12 18512 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑃 ∨ 𝑄)) ↔ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))) | 
| 98 | 4, 21, 96, 74, 97 | syl13anc 1373 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑃 ∨ 𝑄)) ↔ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))) | 
| 99 | 68, 94, 98 | mpbi2and 712 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) | 
| 100 | 1, 2, 7, 19, 8 | atmod3i1 39867 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑆)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) | 
| 101 | 3, 11, 49, 45, 81, 100 | syl131anc 1384 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) | 
| 102 | 101 | oveq2d 7448 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) = ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)))) | 
| 103 | 1, 7 | latj12 18530 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∧ 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾))) → ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) = (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 104 | 4, 47, 13, 51, 103 | syl13anc 1373 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) = (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 105 | 1, 2, 7, 19 | latmlej12 18525 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 ∧ 𝑈) ≤ (𝑃 ∨ 𝑄)) | 
| 106 | 4, 45, 27, 13, 105 | syl13anc 1373 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ 𝑈) ≤ (𝑃 ∨ 𝑄)) | 
| 107 | 1, 2, 7, 19, 8 | atmod1i1m 39861 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ (𝑄 ∧ 𝑈) ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) | 
| 108 | 3, 25, 45, 49, 74, 106, 107 | syl231anc 1391 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) | 
| 109 | 102, 104,
108 | 3eqtr3rd 2785 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∧ 𝑈) ∨ (𝑃 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)) = (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 110 | 99, 109 | breqtrd 5168 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 111 | 2, 7, 8 | hlatlej1 39377 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑅)) | 
| 112 | 3, 5, 22, 111 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ≤ (𝑄 ∨ 𝑅)) | 
| 113 | 2, 7, 8 | hlatlej2 39378 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ (𝑅 ∨ 𝑈)) | 
| 114 | 3, 22, 25, 113 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ≤ (𝑅 ∨ 𝑈)) | 
| 115 | 1, 19 | latmcl 18486 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) | 
| 116 | 4, 49, 10, 115 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) | 
| 117 | 1, 7, 8 | hlatjcl 39369 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 118 | 3, 22, 25, 117 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) | 
| 119 | 2, 7, 8 | hlatlej1 39377 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑇)) | 
| 120 | 3, 5, 6, 119 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ≤ (𝑄 ∨ 𝑇)) | 
| 121 | 1, 2, 19 | latmlem2 18516 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → (𝑄 ≤ (𝑄 ∨ 𝑇) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))) | 
| 122 | 4, 45, 10, 49, 121 | syl13anc 1373 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ≤ (𝑄 ∨ 𝑇) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))) | 
| 123 | 120, 122 | mpd 15 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) | 
| 124 |  | simp13 1205 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) | 
| 125 | 1, 2, 4, 51, 116, 118, 123, 124 | lattrd 18492 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ (𝑅 ∨ 𝑈)) | 
| 126 | 1, 2, 7 | latjle12 18496 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾))) → ((𝑈 ≤ (𝑅 ∨ 𝑈) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ (𝑅 ∨ 𝑈)) ↔ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ 𝑈))) | 
| 127 | 4, 27, 51, 118, 126 | syl13anc 1373 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑈 ≤ (𝑅 ∨ 𝑈) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ (𝑅 ∨ 𝑈)) ↔ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ 𝑈))) | 
| 128 | 114, 125,
127 | mpbi2and 712 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ 𝑈)) | 
| 129 | 1, 7 | latjcl 18485 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾)) → (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾)) | 
| 130 | 4, 27, 51, 129 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾)) | 
| 131 | 1, 2, 19 | latmlem12 18517 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ((𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑄 ∨ 𝑅) ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ 𝑈)) → (𝑄 ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈)))) | 
| 132 | 4, 45, 24, 130, 118, 131 | syl122anc 1380 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ≤ (𝑄 ∨ 𝑅) ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ 𝑈)) → (𝑄 ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈)))) | 
| 133 | 112, 128,
132 | mp2and 699 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) | 
| 134 | 1, 2, 19 | latmle2 18511 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ 𝑄) | 
| 135 | 4, 49, 45, 134 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ 𝑄) | 
| 136 | 1, 2, 7, 19, 8 | atmod2i2 39865 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑈 ∈ 𝐴 ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 ∨ 𝑆) ∧ 𝑄) ≤ 𝑄) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) = (𝑄 ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 137 | 3, 25, 45, 51, 135, 136 | syl131anc 1384 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) = (𝑄 ∧ (𝑈 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)))) | 
| 138 | 2, 7, 8 | hlatlej2 39378 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ≤ (𝑄 ∨ 𝑅)) | 
| 139 | 3, 5, 22, 138 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ≤ (𝑄 ∨ 𝑅)) | 
| 140 | 1, 2, 7, 19, 8 | atmod3i2 39868 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑈 ∈ 𝐴 ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑅)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) | 
| 141 | 3, 25, 57, 24, 139, 140 | syl131anc 1384 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) | 
| 142 | 133, 137,
141 | 3brtr4d 5174 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) | 
| 143 | 1, 2, 7 | latjlej2 18500 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ∈ (Base‘𝐾) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) → (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))))) | 
| 144 | 4, 53, 59, 13, 143 | syl13anc 1373 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄)) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) → (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))))) | 
| 145 | 142, 144 | mpd 15 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∧ 𝑈) ∨ ((𝑃 ∨ 𝑆) ∧ 𝑄))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)))) | 
| 146 | 1, 2, 4, 21, 55, 61, 110, 145 | lattrd 18492 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)))) | 
| 147 | 1, 7 | latj13 18532 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾))) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) | 
| 148 | 4, 13, 57, 29, 147 | syl13anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) | 
| 149 | 146, 148 | breqtrd 5168 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) | 
| 150 | 1, 2, 7, 19 | latmlej22 18527 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑇) ∨ 𝑃) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) | 
| 151 | 4, 18, 15, 27, 150 | syl13anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) | 
| 152 | 1, 7 | latjcl 18485 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾)) | 
| 153 | 4, 29, 31, 152 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾)) | 
| 154 | 1, 2, 19 | latlem12 18512 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ∈ (Base‘𝐾) ∧ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾))) → (((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) ↔ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆)))) | 
| 155 | 4, 21, 153, 33, 154 | syl13anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) ↔ (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆)))) | 
| 156 | 149, 151,
155 | mpbi2and 712 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) | 
| 157 | 1, 2, 7, 19 | latmlej21 18526 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) | 
| 158 | 4, 27, 24, 18, 157 | syl13anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) | 
| 159 | 1, 2, 7, 19, 8 | atmod1i1m 39861 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴) ∧ ((𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) | 
| 160 | 3, 25, 24, 31, 33, 158, 159 | syl231anc 1391 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) | 
| 161 | 156, 160 | breqtrrd 5170 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | 
| 162 | 2, 7, 8 | hlatlej2 39378 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ (𝑇 ∨ 𝑈)) | 
| 163 | 3, 6, 25, 162 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ≤ (𝑇 ∨ 𝑈)) | 
| 164 | 1, 2, 19 | latmlem2 18516 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → (𝑈 ≤ (𝑇 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)))) | 
| 165 | 4, 27, 39, 24, 164 | syl13anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ≤ (𝑇 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)))) | 
| 166 | 163, 165 | mpd 15 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) | 
| 167 | 1, 2, 7 | latjlej1 18499 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | 
| 168 | 4, 29, 41, 35, 167 | syl13anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | 
| 169 | 166, 168 | mpd 15 | . 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | 
| 170 | 1, 2, 4, 21, 37, 43, 161, 169 | lattrd 18492 | 1
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |