Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem3 Structured version   Visualization version   GIF version

Theorem dalawlem3 39830
Description: Lemma for dalaw 39843. First piece of dalawlem5 39832. (Contributed by NM, 4-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem3
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . 2 = (le‘𝐾)
3 simp11 1203 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 39320 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
6 simp32 1210 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
7 dalawlem.j . . . . . 6 = (join‘𝐾)
8 dalawlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
11 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
121, 8atbase 39245 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
141, 7latjcl 18509 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾))
16 simp31 1209 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
171, 8atbase 39245 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
19 dalawlem.m . . . 4 = (meet‘𝐾)
201, 19latmcl 18510 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑄 𝑇) 𝑃) 𝑆) ∈ (Base‘𝐾))
214, 15, 18, 20syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) ∈ (Base‘𝐾))
22 simp23 1208 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
231, 7, 8hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
243, 5, 22, 23syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 simp33 1211 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
261, 8atbase 39245 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
281, 19latmcl 18510 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
294, 24, 27, 28syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
301, 7, 8hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
313, 22, 11, 30syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
321, 7, 8hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
333, 25, 16, 32syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
341, 19latmcl 18510 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
354, 31, 33, 34syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
361, 7latjcl 18509 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
374, 29, 35, 36syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
381, 7, 8hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
393, 6, 25, 38syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
401, 19latmcl 18510 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
414, 24, 39, 40syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
421, 7latjcl 18509 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
434, 41, 35, 42syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
441, 8atbase 39245 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
455, 44syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
461, 19latmcl 18510 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑄 𝑈) ∈ (Base‘𝐾))
474, 45, 27, 46syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) ∈ (Base‘𝐾))
481, 7, 8hlatjcl 39323 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
493, 11, 16, 48syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
501, 19latmcl 18510 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
514, 49, 45, 50syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
521, 7latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 𝑈) ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾)) → ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾))
534, 47, 51, 52syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾))
541, 7latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾)) → (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))) ∈ (Base‘𝐾))
554, 13, 53, 54syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))) ∈ (Base‘𝐾))
561, 8atbase 39245 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5722, 56syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 ∈ (Base‘𝐾))
581, 7latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
594, 57, 29, 58syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
601, 7latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
614, 13, 59, 60syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
621, 7latjcl 18509 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝑄 𝑈) 𝑃) ∈ (Base‘𝐾))
634, 47, 13, 62syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) 𝑃) ∈ (Base‘𝐾))
641, 2, 7, 19latmlej22 18551 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾) ∧ ((𝑄 𝑈) 𝑃) ∈ (Base‘𝐾))) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑈) 𝑃) 𝑆))
654, 18, 15, 63, 64syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑈) 𝑃) 𝑆))
661, 7latjass 18553 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑄 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 𝑈) 𝑃) 𝑆) = ((𝑄 𝑈) (𝑃 𝑆)))
674, 47, 13, 18, 66syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑈) 𝑃) 𝑆) = ((𝑄 𝑈) (𝑃 𝑆)))
6865, 67breqtrd 5192 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) ((𝑄 𝑈) (𝑃 𝑆)))
691, 19latmcl 18510 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
704, 10, 49, 69syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
711, 7latjcl 18509 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) ∈ (Base‘𝐾))
724, 70, 13, 71syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) ∈ (Base‘𝐾))
731, 7, 8hlatjcl 39323 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
743, 11, 5, 73syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
752, 7, 8hlatlej2 39332 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
763, 11, 16, 75syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑃 𝑆))
771, 2, 19latmlem2 18540 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾))) → (𝑆 (𝑃 𝑆) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑇) 𝑃) (𝑃 𝑆))))
784, 18, 49, 15, 77syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 (𝑃 𝑆) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑇) 𝑃) (𝑃 𝑆))))
7976, 78mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑇) 𝑃) (𝑃 𝑆)))
802, 7, 8hlatlej1 39331 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑃 (𝑃 𝑆))
813, 11, 16, 80syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑆))
821, 2, 7, 19, 8atmod4i1 39823 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) = (((𝑄 𝑇) 𝑃) (𝑃 𝑆)))
833, 11, 10, 49, 81, 82syl131anc 1383 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) = (((𝑄 𝑇) 𝑃) (𝑃 𝑆)))
8479, 83breqtrrd 5194 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑇) (𝑃 𝑆)) 𝑃))
851, 19latmcom 18533 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
864, 10, 49, 85syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
87 simp12 1204 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄))
8886, 87eqbrtrd 5188 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑄))
892, 7, 8hlatlej1 39331 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
903, 11, 5, 89syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑄))
911, 2, 7latjle12 18520 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑄) ∧ 𝑃 (𝑃 𝑄)) ↔ (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) (𝑃 𝑄)))
924, 70, 13, 74, 91syl13anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑄) ∧ 𝑃 (𝑃 𝑄)) ↔ (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) (𝑃 𝑄)))
9388, 90, 92mpbi2and 711 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) 𝑃) (𝑃 𝑄))
941, 2, 4, 21, 72, 74, 84, 93lattrd 18516 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (𝑃 𝑄))
951, 7latjcl 18509 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑈) (𝑃 𝑆)) ∈ (Base‘𝐾))
964, 47, 49, 95syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) (𝑃 𝑆)) ∈ (Base‘𝐾))
971, 2, 19latlem12 18536 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((𝑄 𝑇) 𝑃) 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑈) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((((𝑄 𝑇) 𝑃) 𝑆) ((𝑄 𝑈) (𝑃 𝑆)) ∧ (((𝑄 𝑇) 𝑃) 𝑆) (𝑃 𝑄)) ↔ (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄))))
984, 21, 96, 74, 97syl13anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑄 𝑇) 𝑃) 𝑆) ((𝑄 𝑈) (𝑃 𝑆)) ∧ (((𝑄 𝑇) 𝑃) 𝑆) (𝑃 𝑄)) ↔ (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄))))
9968, 94, 98mpbi2and 711 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄)))
1001, 2, 7, 19, 8atmod3i1 39821 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑃 𝑆) 𝑄)) = ((𝑃 𝑆) (𝑃 𝑄)))
1013, 11, 49, 45, 81, 100syl131anc 1383 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) 𝑄)) = ((𝑃 𝑆) (𝑃 𝑄)))
102101oveq2d 7464 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) (𝑃 ((𝑃 𝑆) 𝑄))) = ((𝑄 𝑈) ((𝑃 𝑆) (𝑃 𝑄))))
1031, 7latj12 18554 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑄 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))) → ((𝑄 𝑈) (𝑃 ((𝑃 𝑆) 𝑄))) = (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))))
1044, 47, 13, 51, 103syl13anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) (𝑃 ((𝑃 𝑆) 𝑄))) = (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))))
1051, 2, 7, 19latmlej12 18549 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 𝑈) (𝑃 𝑄))
1064, 45, 27, 13, 105syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) (𝑃 𝑄))
1071, 2, 7, 19, 8atmod1i1m 39815 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑈𝐴) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑄 𝑈) (𝑃 𝑄)) → ((𝑄 𝑈) ((𝑃 𝑆) (𝑃 𝑄))) = (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄)))
1083, 25, 45, 49, 74, 106, 107syl231anc 1390 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) ((𝑃 𝑆) (𝑃 𝑄))) = (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄)))
109102, 104, 1083eqtr3rd 2789 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑈) (𝑃 𝑆)) (𝑃 𝑄)) = (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))))
11099, 109breqtrd 5192 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))))
1112, 7, 8hlatlej1 39331 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → 𝑄 (𝑄 𝑅))
1123, 5, 22, 111syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑅))
1132, 7, 8hlatlej2 39332 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → 𝑈 (𝑅 𝑈))
1143, 22, 25, 113syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑅 𝑈))
1151, 19latmcl 18510 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1164, 49, 10, 115syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1171, 7, 8hlatjcl 39323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
1183, 22, 25, 117syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) ∈ (Base‘𝐾))
1192, 7, 8hlatlej1 39331 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
1203, 5, 6, 119syl3anc 1371 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑇))
1211, 2, 19latmlem2 18540 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → (𝑄 (𝑄 𝑇) → ((𝑃 𝑆) 𝑄) ((𝑃 𝑆) (𝑄 𝑇))))
1224, 45, 10, 49, 121syl13anc 1372 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑄 𝑇) → ((𝑃 𝑆) 𝑄) ((𝑃 𝑆) (𝑄 𝑇))))
123120, 122mpd 15 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) ((𝑃 𝑆) (𝑄 𝑇)))
124 simp13 1205 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
1251, 2, 4, 51, 116, 118, 123, 124lattrd 18516 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) (𝑅 𝑈))
1261, 2, 7latjle12 18520 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾))) → ((𝑈 (𝑅 𝑈) ∧ ((𝑃 𝑆) 𝑄) (𝑅 𝑈)) ↔ (𝑈 ((𝑃 𝑆) 𝑄)) (𝑅 𝑈)))
1274, 27, 51, 118, 126syl13anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 (𝑅 𝑈) ∧ ((𝑃 𝑆) 𝑄) (𝑅 𝑈)) ↔ (𝑈 ((𝑃 𝑆) 𝑄)) (𝑅 𝑈)))
128114, 125, 127mpbi2and 711 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 ((𝑃 𝑆) 𝑄)) (𝑅 𝑈))
1291, 7latjcl 18509 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾)) → (𝑈 ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾))
1304, 27, 51, 129syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾))
1311, 2, 19latmlem12 18541 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ ((𝑈 ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾))) → ((𝑄 (𝑄 𝑅) ∧ (𝑈 ((𝑃 𝑆) 𝑄)) (𝑅 𝑈)) → (𝑄 (𝑈 ((𝑃 𝑆) 𝑄))) ((𝑄 𝑅) (𝑅 𝑈))))
1324, 45, 24, 130, 118, 131syl122anc 1379 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑄 𝑅) ∧ (𝑈 ((𝑃 𝑆) 𝑄)) (𝑅 𝑈)) → (𝑄 (𝑈 ((𝑃 𝑆) 𝑄))) ((𝑄 𝑅) (𝑅 𝑈))))
133112, 128, 132mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑈 ((𝑃 𝑆) 𝑄))) ((𝑄 𝑅) (𝑅 𝑈)))
1341, 2, 19latmle2 18535 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) 𝑄)
1354, 49, 45, 134syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) 𝑄)
1361, 2, 7, 19, 8atmod2i2 39819 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾)) ∧ ((𝑃 𝑆) 𝑄) 𝑄) → ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) = (𝑄 (𝑈 ((𝑃 𝑆) 𝑄))))
1373, 25, 45, 51, 135, 136syl131anc 1383 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) = (𝑄 (𝑈 ((𝑃 𝑆) 𝑄))))
1382, 7, 8hlatlej2 39332 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → 𝑅 (𝑄 𝑅))
1393, 5, 22, 138syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 (𝑄 𝑅))
1401, 2, 7, 19, 8atmod3i2 39822 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑅 (𝑄 𝑅)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
1413, 25, 57, 24, 139, 140syl131anc 1383 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
142133, 137, 1413brtr4d 5198 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) (𝑅 ((𝑄 𝑅) 𝑈)))
1431, 2, 7latjlej2 18524 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
1444, 53, 59, 13, 143syl13anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑈) ((𝑃 𝑆) 𝑄)) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
145142, 144mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑈) ((𝑃 𝑆) 𝑄))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1461, 2, 4, 21, 55, 61, 110, 145lattrd 18516 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1471, 7latj13 18556 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1484, 13, 57, 29, 147syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
149146, 148breqtrd 5192 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1501, 2, 7, 19latmlej22 18551 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑄 𝑇) 𝑃) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (((𝑄 𝑇) 𝑃) 𝑆) (𝑈 𝑆))
1514, 18, 15, 27, 150syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (𝑈 𝑆))
1521, 7latjcl 18509 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1534, 29, 31, 152syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1541, 2, 19latlem12 18536 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑄 𝑇) 𝑃) 𝑆) ∈ (Base‘𝐾) ∧ (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾))) → (((((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑄 𝑇) 𝑃) 𝑆) (𝑈 𝑆)) ↔ (((𝑄 𝑇) 𝑃) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
1554, 21, 153, 33, 154syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑄 𝑇) 𝑃) 𝑆) (𝑈 𝑆)) ↔ (((𝑄 𝑇) 𝑃) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
156149, 151, 155mpbi2and 711 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1571, 2, 7, 19latmlej21 18550 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1584, 27, 24, 18, 157syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1591, 2, 7, 19, 8atmod1i1m 39815 . . . 4 (((𝐾 ∈ HL ∧ 𝑈𝐴) ∧ ((𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) ∧ ((𝑄 𝑅) 𝑈) (𝑈 𝑆)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1603, 25, 24, 31, 33, 158, 159syl231anc 1390 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
161156, 160breqtrrd 5194 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1622, 7, 8hlatlej2 39332 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1633, 6, 25, 162syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1641, 2, 19latmlem2 18540 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
1654, 27, 39, 24, 164syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
166163, 165mpd 15 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)))
1671, 2, 7latjlej1 18523 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
1684, 29, 41, 35, 167syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
169166, 168mpd 15 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
1701, 2, 4, 21, 37, 43, 161, 169lattrd 18516 1 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753
This theorem is referenced by:  dalawlem4  39831  dalawlem5  39832
  Copyright terms: Public domain W3C validator