Proof of Theorem dalawlem6
Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. 2
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | dalawlem.l |
. 2
⊢ ≤ =
(le‘𝐾) |
3 | | simp11 1200 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ HL) |
4 | 3 | hllatd 36940 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ Lat) |
5 | | simp21 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
6 | | simp22 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
7 | | dalawlem.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | dalawlem.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 1, 7, 8 | hlatjcl 36943 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | 3, 5, 6, 9 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | | simp32 1207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
12 | 1, 8 | atbase 36865 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ (Base‘𝐾)) |
14 | 1, 7 | latjcl 17727 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
15 | 4, 10, 13, 14 | syl3anc 1368 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
16 | | simp31 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
17 | 1, 8 | atbase 36865 |
. . . 4
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
19 | | dalawlem.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
20 | 1, 19 | latmcl 17728 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Base‘𝐾)) |
21 | 4, 15, 18, 20 | syl3anc 1368 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Base‘𝐾)) |
22 | | simp23 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
23 | 1, 7, 8 | hlatjcl 36943 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
24 | 3, 6, 22, 23 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
25 | | simp33 1208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
26 | 1, 8 | atbase 36865 |
. . . . 5
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ (Base‘𝐾)) |
28 | 1, 19 | latmcl 17728 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) |
29 | 4, 24, 27, 28 | syl3anc 1368 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) |
30 | 1, 7, 8 | hlatjcl 36943 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
31 | 3, 22, 5, 30 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) |
32 | 1, 7, 8 | hlatjcl 36943 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
33 | 3, 25, 16, 32 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
34 | 1, 19 | latmcl 17728 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
35 | 4, 31, 33, 34 | syl3anc 1368 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
36 | 1, 7 | latjcl 17727 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) |
37 | 4, 29, 35, 36 | syl3anc 1368 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) |
38 | 1, 7, 8 | hlatjcl 36943 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
39 | 3, 11, 25, 38 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
40 | 1, 19 | latmcl 17728 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
41 | 4, 24, 39, 40 | syl3anc 1368 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
42 | 1, 7 | latjcl 17727 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) |
43 | 4, 41, 35, 42 | syl3anc 1368 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ∈ (Base‘𝐾)) |
44 | 1, 8 | atbase 36865 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
45 | 5, 44 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
46 | 1, 7, 8 | hlatjcl 36943 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
47 | 3, 5, 16, 46 | syl3anc 1368 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
48 | 1, 7, 8 | hlatjcl 36943 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
49 | 3, 6, 11, 48 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
50 | 1, 19 | latmcl 17728 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
51 | 4, 24, 49, 50 | syl3anc 1368 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
52 | 1, 19 | latmcl 17728 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾)) |
53 | 4, 47, 51, 52 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾)) |
54 | 1, 7 | latjcl 17727 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ∈ (Base‘𝐾)) |
55 | 4, 45, 53, 54 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ∈ (Base‘𝐾)) |
56 | 1, 8 | atbase 36865 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
57 | 22, 56 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
58 | 1, 7 | latjcl 17727 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) |
59 | 4, 57, 29, 58 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) |
60 | 1, 7 | latjcl 17727 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) ∈ (Base‘𝐾)) |
61 | 4, 45, 59, 60 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) ∈ (Base‘𝐾)) |
62 | 1, 2, 7, 19 | latmlej22 17769 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ 𝑆)) |
63 | 4, 18, 15, 45, 62 | syl13anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ 𝑆)) |
64 | 1, 19 | latmcl 17728 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
65 | 4, 49, 47, 64 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
66 | 1, 7 | latjcl 17727 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ∈ (Base‘𝐾)) |
67 | 4, 45, 65, 66 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ∈ (Base‘𝐾)) |
68 | 1, 7 | latjcl 17727 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾)) |
69 | 4, 45, 51, 68 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾)) |
70 | 2, 7, 8 | hlatlej2 36952 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
71 | 3, 5, 16, 70 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
72 | 1, 7 | latjcl 17727 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
73 | 4, 45, 49, 72 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
74 | 1, 2, 19 | latmlem2 17758 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾))) → (𝑆 ≤ (𝑃 ∨ 𝑆) → ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≤ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆)))) |
75 | 4, 18, 47, 73, 74 | syl13anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑆 ≤ (𝑃 ∨ 𝑆) → ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≤ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆)))) |
76 | 71, 75 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≤ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆))) |
77 | 7, 8 | hlatjass 36946 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) = (𝑃 ∨ (𝑄 ∨ 𝑇))) |
78 | 3, 5, 6, 11, 77 | syl13anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) = (𝑃 ∨ (𝑄 ∨ 𝑇))) |
79 | 78 | oveq1d 7165 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆)) |
80 | 2, 7, 8 | hlatlej1 36951 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
81 | 3, 5, 16, 80 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ≤ (𝑃 ∨ 𝑆)) |
82 | 1, 2, 7, 19, 8 | atmod1i1 37433 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑆)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆))) |
83 | 3, 5, 49, 47, 81, 82 | syl131anc 1380 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆))) |
84 | 76, 79, 83 | 3brtr4d 5064 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)))) |
85 | 1, 19 | latmcom 17751 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
86 | 4, 49, 47, 85 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
87 | | simp12 1201 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅)) |
88 | 86, 87 | eqbrtrd 5054 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑅)) |
89 | 1, 2, 19 | latmle1 17752 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) |
90 | 4, 49, 47, 89 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) |
91 | 1, 2, 19 | latlem12 17754 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾))) → ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) ↔ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) |
92 | 4, 65, 24, 49, 91 | syl13anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ (𝑄 ∨ 𝑇)) ↔ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) |
93 | 88, 90, 92 | mpbi2and 711 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) |
94 | 1, 2, 7 | latjlej2 17742 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
95 | 4, 65, 51, 45, 94 | syl13anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
96 | 93, 95 | mpd 15 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) |
97 | 1, 2, 4, 21, 67, 69, 84, 96 | lattrd 17734 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) |
98 | 1, 2, 19 | latlem12 17754 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾))) → (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ 𝑆) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))) |
99 | 4, 21, 47, 69, 98 | syl13anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ 𝑆) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))) |
100 | 63, 97, 99 | mpbi2and 711 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
101 | 1, 2, 7, 19, 8 | atmod3i1 37440 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑆)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
102 | 3, 5, 47, 51, 81, 101 | syl131anc 1380 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
103 | 100, 102 | breqtrrd 5060 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))) |
104 | | simp13 1202 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) |
105 | 1, 19 | latmcl 17728 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
106 | 4, 47, 49, 105 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
107 | 1, 7, 8 | hlatjcl 36943 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
108 | 3, 22, 25, 107 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑈) ∈ (Base‘𝐾)) |
109 | 1, 2, 19 | latmlem2 17758 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈)))) |
110 | 4, 106, 108, 24, 109 | syl13anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈)))) |
111 | 104, 110 | mpd 15 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) |
112 | | hlol 36937 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
113 | 3, 112 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ OL) |
114 | 1, 19 | latm12 36806 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))) |
115 | 113, 47, 24, 49, 114 | syl13anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))) |
116 | 2, 7, 8 | hlatlej2 36952 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → 𝑅 ≤ (𝑄 ∨ 𝑅)) |
117 | 3, 6, 22, 116 | syl3anc 1368 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑅 ≤ (𝑄 ∨ 𝑅)) |
118 | 1, 2, 7, 19, 8 | atmod3i1 37440 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑄 ∨ 𝑅)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) |
119 | 3, 22, 24, 27, 117, 118 | syl131anc 1380 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ 𝑈))) |
120 | 111, 115,
119 | 3brtr4d 5064 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) |
121 | 1, 2, 7 | latjlej2 17742 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Base‘𝐾) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))))) |
122 | 4, 53, 59, 45, 121 | syl13anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))))) |
123 | 120, 122 | mpd 15 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)))) |
124 | 1, 2, 4, 21, 55, 61, 103, 123 | lattrd 17734 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈)))) |
125 | 1, 7 | latj13 17774 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾))) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) |
126 | 4, 45, 57, 29, 125 | syl13anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ 𝑈))) = (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) |
127 | 124, 126 | breqtrd 5058 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃))) |
128 | 1, 2, 7, 19 | latmlej22 17769 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) |
129 | 4, 18, 15, 27, 128 | syl13anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) |
130 | 1, 7 | latjcl 17727 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾)) |
131 | 4, 29, 31, 130 | syl3anc 1368 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾)) |
132 | 1, 2, 19 | latlem12 17754 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Base‘𝐾) ∧ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾))) → (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆)))) |
133 | 4, 21, 131, 33, 132 | syl13anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (𝑈 ∨ 𝑆)) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆)))) |
134 | 127, 129,
133 | mpbi2and 711 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) |
135 | 1, 2, 7, 19 | latmlej21 17768 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) |
136 | 4, 27, 24, 18, 135 | syl13anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) |
137 | 1, 2, 7, 19, 8 | atmod1i1m 37434 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴) ∧ ((𝑄 ∨ 𝑅) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) ∧ ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ (𝑈 ∨ 𝑆)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) |
138 | 3, 25, 24, 31, 33, 136, 137 | syl231anc 1387 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ (𝑅 ∨ 𝑃)) ∧ (𝑈 ∨ 𝑆))) |
139 | 134, 138 | breqtrrd 5060 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
140 | 2, 7, 8 | hlatlej2 36952 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ (𝑇 ∨ 𝑈)) |
141 | 3, 11, 25, 140 | syl3anc 1368 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ≤ (𝑇 ∨ 𝑈)) |
142 | 1, 2, 19 | latmlem2 17758 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → (𝑈 ≤ (𝑇 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)))) |
143 | 4, 27, 39, 24, 142 | syl13anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ≤ (𝑇 ∨ 𝑈) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)))) |
144 | 141, 143 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) |
145 | 1, 2, 7 | latjlej1 17741 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑅) ∧ 𝑈) ∈ (Base‘𝐾) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾))) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) |
146 | 4, 29, 41, 35, 145 | syl13anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ≤ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) |
147 | 144, 146 | mpd 15 |
. 2
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∧ 𝑈) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
148 | 1, 2, 4, 21, 37, 43, 139, 147 | lattrd 17734 |
1
⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |