Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem6 Structured version   Visualization version   GIF version

Theorem dalawlem6 38342
Description: Lemma for dalaw 38352. First piece of dalawlem8 38344. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l ≀ = (leβ€˜πΎ)
dalawlem.j ∨ = (joinβ€˜πΎ)
dalawlem.m ∧ = (meetβ€˜πΎ)
dalawlem.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
dalawlem6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))

Proof of Theorem dalawlem6
StepHypRef Expression
1 eqid 2737 . 2 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 dalawlem.l . 2 ≀ = (leβ€˜πΎ)
3 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ HL)
43hllatd 37829 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
5 simp21 1207 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
6 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
7 dalawlem.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 dalawlem.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
91, 7, 8hlatjcl 37832 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
103, 5, 6, 9syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp32 1211 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ 𝐴)
121, 8atbase 37754 . . . . 5 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
141, 7latjcl 18329 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
154, 10, 13, 14syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
16 simp31 1210 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
171, 8atbase 37754 . . . 4 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
19 dalawlem.m . . . 4 ∧ = (meetβ€˜πΎ)
201, 19latmcl 18330 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Baseβ€˜πΎ))
214, 15, 18, 20syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Baseβ€˜πΎ))
22 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
231, 7, 8hlatjcl 37832 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
243, 6, 22, 23syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
25 simp33 1212 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ∈ 𝐴)
261, 8atbase 37754 . . . . 5 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
281, 19latmcl 18330 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ))
294, 24, 27, 28syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ))
301, 7, 8hlatjcl 37832 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ))
313, 22, 5, 30syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ))
321, 7, 8hlatjcl 37832 . . . . 5 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
333, 25, 16, 32syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
341, 19latmcl 18330 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
354, 31, 33, 34syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
361, 7latjcl 18329 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
374, 29, 35, 36syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
381, 7, 8hlatjcl 37832 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
393, 11, 25, 38syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
401, 19latmcl 18330 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
414, 24, 39, 40syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
421, 7latjcl 18329 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
434, 41, 35, 42syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
441, 8atbase 37754 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
455, 44syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
461, 7, 8hlatjcl 37832 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
473, 5, 16, 46syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
481, 7, 8hlatjcl 37832 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
493, 6, 11, 48syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
501, 19latmcl 18330 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
514, 24, 49, 50syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
521, 19latmcl 18330 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ))
534, 47, 51, 52syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ))
541, 7latjcl 18329 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ∈ (Baseβ€˜πΎ))
554, 45, 53, 54syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ∈ (Baseβ€˜πΎ))
561, 8atbase 37754 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
5722, 56syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
581, 7latjcl 18329 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) ∈ (Baseβ€˜πΎ))
594, 57, 29, 58syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) ∈ (Baseβ€˜πΎ))
601, 7latjcl 18329 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))) ∈ (Baseβ€˜πΎ))
614, 45, 59, 60syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))) ∈ (Baseβ€˜πΎ))
621, 2, 7, 19latmlej22 18371 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ 𝑆))
634, 18, 15, 45, 62syl13anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ 𝑆))
641, 19latmcl 18330 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
654, 49, 47, 64syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
661, 7latjcl 18329 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
674, 45, 65, 66syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
681, 7latjcl 18329 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ))
694, 45, 51, 68syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ))
702, 7, 8hlatlej2 37841 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
713, 5, 16, 70syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
721, 7latjcl 18329 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
734, 45, 49, 72syl3anc 1372 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
741, 2, 19latmlem2 18360 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))) β†’ (𝑆 ≀ (𝑃 ∨ 𝑆) β†’ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≀ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆))))
754, 18, 47, 73, 74syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑆 ≀ (𝑃 ∨ 𝑆) β†’ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≀ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆))))
7671, 75mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆) ≀ ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆)))
777, 8hlatjass 37835 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) = (𝑃 ∨ (𝑄 ∨ 𝑇)))
783, 5, 6, 11, 77syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) = (𝑃 ∨ (𝑄 ∨ 𝑇)))
7978oveq1d 7373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ 𝑆))
802, 7, 8hlatlej1 37840 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ 𝑆))
813, 5, 16, 80syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ≀ (𝑃 ∨ 𝑆))
821, 2, 7, 19, 8atmod1i1 38323 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) ∧ 𝑃 ≀ (𝑃 ∨ 𝑆)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆)))
833, 5, 49, 47, 81, 82syl131anc 1384 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) = ((𝑃 ∨ (𝑄 ∨ 𝑇)) ∧ (𝑃 ∨ 𝑆)))
8476, 79, 833brtr4d 5138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))))
851, 19latmcom 18353 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))
864, 49, 47, 85syl3anc 1372 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)))
87 simp12 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅))
8886, 87eqbrtrd 5128 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑅))
891, 2, 19latmle1 18354 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
904, 49, 47, 89syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
911, 2, 19latlem12 18356 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇)) ↔ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))
924, 65, 24, 49, 91syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇)) ↔ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))
9388, 90, 92mpbi2and 711 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))
941, 2, 7latjlej2 18344 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
954, 65, 51, 45, 94syl13anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
9693, 95mpd 15 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))
971, 2, 4, 21, 67, 69, 84, 96lattrd 18336 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))
981, 2, 19latlem12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ))) β†’ (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ 𝑆) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))))
994, 21, 47, 69, 98syl13anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ 𝑆) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))))))
10063, 97, 99mpbi2and 711 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
1011, 2, 7, 19, 8atmod3i1 38330 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ)) ∧ 𝑃 ≀ (𝑃 ∨ 𝑆)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
1023, 5, 47, 51, 81, 101syl131anc 1384 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
103100, 102breqtrrd 5134 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))))
104 simp13 1206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ))
1051, 19latmcl 18330 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
1064, 47, 49, 105syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
1071, 7, 8hlatjcl 37832 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1083, 22, 25, 107syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1091, 2, 19latmlem2 18360 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ) β†’ ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ π‘ˆ))))
1104, 106, 108, 24, 109syl13anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ) β†’ ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ π‘ˆ))))
111104, 110mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ π‘ˆ)))
112 hlol 37826 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
1133, 112syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ OL)
1141, 19latm12 37695 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))))
115113, 47, 24, 49, 114syl13anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))))
1162, 7, 8hlatlej2 37841 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ 𝑅 ≀ (𝑄 ∨ 𝑅))
1173, 6, 22, 116syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑅 ≀ (𝑄 ∨ 𝑅))
1181, 2, 7, 19, 8atmod3i1 38330 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ π‘ˆ)))
1193, 22, 24, 27, 117, 118syl131anc 1384 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) = ((𝑄 ∨ 𝑅) ∧ (𝑅 ∨ π‘ˆ)))
120111, 115, 1193brtr4d 5138 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≀ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)))
1211, 2, 7latjlej2 18344 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≀ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≀ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)))))
1224, 53, 59, 45, 121syl13anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇))) ≀ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≀ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ)))))
123120, 122mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑄 ∨ 𝑇)))) ≀ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))))
1241, 2, 4, 21, 55, 61, 103, 123lattrd 18336 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))))
1251, 7latj13 18376 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ))) β†’ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))) = (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)))
1264, 45, 57, 29, 125syl13anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ (𝑅 ∨ ((𝑄 ∨ 𝑅) ∧ π‘ˆ))) = (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)))
127124, 126breqtrd 5132 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)))
1281, 2, 7, 19latmlej22 18371 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (π‘ˆ ∨ 𝑆))
1294, 18, 15, 27, 128syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (π‘ˆ ∨ 𝑆))
1301, 7latjcl 18329 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∈ (Baseβ€˜πΎ))
1314, 29, 31, 130syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∈ (Baseβ€˜πΎ))
1321, 2, 19latlem12 18356 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (π‘ˆ ∨ 𝑆)) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (π‘ˆ ∨ 𝑆))))
1334, 21, 131, 33, 132syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (π‘ˆ ∨ 𝑆)) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (π‘ˆ ∨ 𝑆))))
134127, 129, 133mpbi2and 711 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ ((((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (π‘ˆ ∨ 𝑆)))
1351, 2, 7, 19latmlej21 18370 . . . . 5 ((𝐾 ∈ Lat ∧ (π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ (π‘ˆ ∨ 𝑆))
1364, 27, 24, 18, 135syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ (π‘ˆ ∨ 𝑆))
1371, 2, 7, 19, 8atmod1i1m 38324 . . . 4 (((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴) ∧ ((𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ)) ∧ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ (π‘ˆ ∨ 𝑆)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (π‘ˆ ∨ 𝑆)))
1383, 25, 24, 31, 33, 136, 137syl231anc 1391 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) = ((((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ (𝑅 ∨ 𝑃)) ∧ (π‘ˆ ∨ 𝑆)))
139134, 138breqtrrd 5134 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
1402, 7, 8hlatlej2 37841 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ π‘ˆ ≀ (𝑇 ∨ π‘ˆ))
1413, 11, 25, 140syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑇 ∨ π‘ˆ))
1421, 2, 19latmlem2 18360 . . . . 5 ((𝐾 ∈ Lat ∧ (π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))) β†’ (π‘ˆ ≀ (𝑇 ∨ π‘ˆ) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))))
1434, 27, 39, 24, 142syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ≀ (𝑇 ∨ π‘ˆ) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))))
144141, 143mpd 15 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)))
1451, 2, 7latjlej1 18343 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)))))
1464, 29, 41, 35, 145syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)))))
147144, 146mpd 15 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ π‘ˆ) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
1481, 2, 4, 21, 37, 43, 139, 147lattrd 18336 1 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  lecple 17141  joincjn 18201  meetcmee 18202  Latclat 18321  OLcol 37639  Atomscatm 37728  HLchlt 37815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-psubsp 37969  df-pmap 37970  df-padd 38262
This theorem is referenced by:  dalawlem8  38344
  Copyright terms: Public domain W3C validator