Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem6 Structured version   Visualization version   GIF version

Theorem dalawlem6 39859
Description: Lemma for dalaw 39869. First piece of dalawlem8 39861. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem6
StepHypRef Expression
1 eqid 2735 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . 2 = (le‘𝐾)
3 simp11 1202 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 39346 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1205 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1206 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . 6 = (join‘𝐾)
8 dalawlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 39349 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp32 1209 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
121, 8atbase 39271 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
141, 7latjcl 18497 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
16 simp31 1208 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
171, 8atbase 39271 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
19 dalawlem.m . . . 4 = (meet‘𝐾)
201, 19latmcl 18498 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
214, 15, 18, 20syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
22 simp23 1207 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
231, 7, 8hlatjcl 39349 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
243, 6, 22, 23syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 simp33 1210 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
261, 8atbase 39271 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
281, 19latmcl 18498 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
294, 24, 27, 28syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
301, 7, 8hlatjcl 39349 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
313, 22, 5, 30syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
321, 7, 8hlatjcl 39349 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
333, 25, 16, 32syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
341, 19latmcl 18498 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
354, 31, 33, 34syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
361, 7latjcl 18497 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
374, 29, 35, 36syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
381, 7, 8hlatjcl 39349 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
393, 11, 25, 38syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
401, 19latmcl 18498 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
414, 24, 39, 40syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
421, 7latjcl 18497 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
434, 41, 35, 42syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
441, 8atbase 39271 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
455, 44syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
461, 7, 8hlatjcl 39349 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
473, 5, 16, 46syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
481, 7, 8hlatjcl 39349 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
493, 6, 11, 48syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
501, 19latmcl 18498 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾))
514, 24, 49, 50syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾))
521, 19latmcl 18498 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
534, 47, 51, 52syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
541, 7latjcl 18497 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) ∈ (Base‘𝐾))
554, 45, 53, 54syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) ∈ (Base‘𝐾))
561, 8atbase 39271 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5722, 56syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 ∈ (Base‘𝐾))
581, 7latjcl 18497 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
594, 57, 29, 58syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
601, 7latjcl 18497 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
614, 45, 59, 60syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
621, 2, 7, 19latmlej22 18539 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆))
634, 18, 15, 45, 62syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆))
641, 19latmcl 18498 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
654, 49, 47, 64syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
661, 7latjcl 18497 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) ∈ (Base‘𝐾))
674, 45, 65, 66syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) ∈ (Base‘𝐾))
681, 7latjcl 18497 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) → (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
694, 45, 51, 68syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
702, 7, 8hlatlej2 39358 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
713, 5, 16, 70syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑃 𝑆))
721, 7latjcl 18497 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
734, 45, 49, 72syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
741, 2, 19latmlem2 18528 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))) → (𝑆 (𝑃 𝑆) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆))))
754, 18, 47, 73, 74syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 (𝑃 𝑆) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆))))
7671, 75mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
777, 8hlatjass 39352 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
783, 5, 6, 11, 77syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
7978oveq1d 7446 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) = ((𝑃 (𝑄 𝑇)) 𝑆))
802, 7, 8hlatlej1 39357 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑃 (𝑃 𝑆))
813, 5, 16, 80syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑆))
821, 2, 7, 19, 8atmod1i1 39840 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
833, 5, 49, 47, 81, 82syl131anc 1382 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
8476, 79, 833brtr4d 5180 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑇) (𝑃 𝑆))))
851, 19latmcom 18521 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
864, 49, 47, 85syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
87 simp12 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅))
8886, 87eqbrtrd 5170 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅))
891, 2, 19latmle1 18522 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
904, 49, 47, 89syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
911, 2, 19latlem12 18524 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅) ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇)) ↔ ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇))))
924, 65, 24, 49, 91syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅) ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇)) ↔ ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇))))
9388, 90, 92mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)))
941, 2, 7latjlej2 18512 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
954, 65, 51, 45, 94syl13anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
9693, 95mpd 15 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))
971, 2, 4, 21, 67, 69, 84, 96lattrd 18504 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))
981, 2, 19latlem12 18524 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))) → (((((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))))
994, 21, 47, 69, 98syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))))
10063, 97, 99mpbi2and 712 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
1011, 2, 7, 19, 8atmod3i1 39847 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) = ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
1023, 5, 47, 51, 81, 101syl131anc 1382 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) = ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
103100, 102breqtrrd 5176 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))))
104 simp13 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
1051, 19latmcl 18498 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1064, 47, 49, 105syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1071, 7, 8hlatjcl 39349 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
1083, 22, 25, 107syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) ∈ (Base‘𝐾))
1091, 2, 19latmlem2 18528 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈))))
1104, 106, 108, 24, 109syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈))))
111104, 110mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈)))
112 hlol 39343 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
1133, 112syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
1141, 19latm12 39212 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) = ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))))
115113, 47, 24, 49, 114syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) = ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))))
1162, 7, 8hlatlej2 39358 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → 𝑅 (𝑄 𝑅))
1173, 6, 22, 116syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 (𝑄 𝑅))
1181, 2, 7, 19, 8atmod3i1 39847 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑄 𝑅)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
1193, 22, 24, 27, 117, 118syl131anc 1382 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
120111, 115, 1193brtr4d 5180 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)))
1211, 2, 7latjlej2 18512 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
1224, 53, 59, 45, 121syl13anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
123120, 122mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1241, 2, 4, 21, 55, 61, 103, 123lattrd 18504 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1251, 7latj13 18544 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1264, 45, 57, 29, 125syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
127124, 126breqtrd 5174 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1281, 2, 7, 19latmlej22 18539 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆))
1294, 18, 15, 27, 128syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆))
1301, 7latjcl 18497 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1314, 29, 31, 130syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1321, 2, 19latlem12 18524 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾))) → (((((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆)) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
1334, 21, 131, 33, 132syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆)) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
134127, 129, 133mpbi2and 712 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1351, 2, 7, 19latmlej21 18538 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1364, 27, 24, 18, 135syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1371, 2, 7, 19, 8atmod1i1m 39841 . . . 4 (((𝐾 ∈ HL ∧ 𝑈𝐴) ∧ ((𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) ∧ ((𝑄 𝑅) 𝑈) (𝑈 𝑆)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1383, 25, 24, 31, 33, 136, 137syl231anc 1389 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
139134, 138breqtrrd 5176 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1402, 7, 8hlatlej2 39358 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1413, 11, 25, 140syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1421, 2, 19latmlem2 18528 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
1434, 27, 39, 24, 142syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
144141, 143mpd 15 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)))
1451, 2, 7latjlej1 18511 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
1464, 29, 41, 35, 145syl13anc 1371 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
147144, 146mpd 15 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
1481, 2, 4, 21, 37, 43, 139, 147lattrd 18504 1 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Latclat 18489  OLcol 39156  Atomscatm 39245  HLchlt 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779
This theorem is referenced by:  dalawlem8  39861
  Copyright terms: Public domain W3C validator