Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem6 Structured version   Visualization version   GIF version

Theorem dalawlem6 36879
Description: Lemma for dalaw 36889. First piece of dalawlem8 36881. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem6
StepHypRef Expression
1 eqid 2826 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . 2 = (le‘𝐾)
3 simp11 1197 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 36367 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1200 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1201 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . 6 = (join‘𝐾)
8 dalawlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 36370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp32 1204 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
121, 8atbase 36292 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
141, 7latjcl 17651 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
16 simp31 1203 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
171, 8atbase 36292 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
19 dalawlem.m . . . 4 = (meet‘𝐾)
201, 19latmcl 17652 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
214, 15, 18, 20syl3anc 1365 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
22 simp23 1202 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
231, 7, 8hlatjcl 36370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
243, 6, 22, 23syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 simp33 1205 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
261, 8atbase 36292 . . . . 5 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
2725, 26syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
281, 19latmcl 17652 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
294, 24, 27, 28syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))
301, 7, 8hlatjcl 36370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
313, 22, 5, 30syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
321, 7, 8hlatjcl 36370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
333, 25, 16, 32syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
341, 19latmcl 17652 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
354, 31, 33, 34syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
361, 7latjcl 17651 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
374, 29, 35, 36syl3anc 1365 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
381, 7, 8hlatjcl 36370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
393, 11, 25, 38syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
401, 19latmcl 17652 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
414, 24, 39, 40syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
421, 7latjcl 17651 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
434, 41, 35, 42syl3anc 1365 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
441, 8atbase 36292 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
455, 44syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
461, 7, 8hlatjcl 36370 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
473, 5, 16, 46syl3anc 1365 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
481, 7, 8hlatjcl 36370 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
493, 6, 11, 48syl3anc 1365 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
501, 19latmcl 17652 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾))
514, 24, 49, 50syl3anc 1365 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾))
521, 19latmcl 17652 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
534, 47, 51, 52syl3anc 1365 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
541, 7latjcl 17651 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) ∈ (Base‘𝐾))
554, 45, 53, 54syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) ∈ (Base‘𝐾))
561, 8atbase 36292 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5722, 56syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 ∈ (Base‘𝐾))
581, 7latjcl 17651 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
594, 57, 29, 58syl3anc 1365 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾))
601, 7latjcl 17651 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
614, 45, 59, 60syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) ∈ (Base‘𝐾))
621, 2, 7, 19latmlej22 17693 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆))
634, 18, 15, 45, 62syl13anc 1366 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆))
641, 19latmcl 17652 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
654, 49, 47, 64syl3anc 1365 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
661, 7latjcl 17651 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) ∈ (Base‘𝐾))
674, 45, 65, 66syl3anc 1365 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) ∈ (Base‘𝐾))
681, 7latjcl 17651 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) → (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
694, 45, 51, 68syl3anc 1365 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))
702, 7, 8hlatlej2 36379 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
713, 5, 16, 70syl3anc 1365 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑃 𝑆))
721, 7latjcl 17651 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
734, 45, 49, 72syl3anc 1365 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
741, 2, 19latmlem2 17682 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))) → (𝑆 (𝑃 𝑆) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆))))
754, 18, 47, 73, 74syl13anc 1366 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 (𝑃 𝑆) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆))))
7671, 75mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) 𝑆) ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
777, 8hlatjass 36373 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
783, 5, 6, 11, 77syl13anc 1366 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
7978oveq1d 7163 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) = ((𝑃 (𝑄 𝑇)) 𝑆))
802, 7, 8hlatlej1 36378 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑃 (𝑃 𝑆))
813, 5, 16, 80syl3anc 1365 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑆))
821, 2, 7, 19, 8atmod1i1 36860 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
833, 5, 49, 47, 81, 82syl131anc 1377 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
8476, 79, 833brtr4d 5095 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑇) (𝑃 𝑆))))
851, 19latmcom 17675 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
864, 49, 47, 85syl3anc 1365 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
87 simp12 1198 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅))
8886, 87eqbrtrd 5085 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅))
891, 2, 19latmle1 17676 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
904, 49, 47, 89syl3anc 1365 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
911, 2, 19latlem12 17678 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅) ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇)) ↔ ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇))))
924, 65, 24, 49, 91syl13anc 1366 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑅) ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇)) ↔ ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇))))
9388, 90, 92mpbi2and 708 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)))
941, 2, 7latjlej2 17666 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
954, 65, 51, 45, 94syl13anc 1366 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) ((𝑄 𝑅) (𝑄 𝑇)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
9693, 95mpd 15 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))
971, 2, 4, 21, 67, 69, 84, 96lattrd 17658 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))
981, 2, 19latlem12 17678 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾))) → (((((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))))
994, 21, 47, 69, 98syl13anc 1366 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑃 𝑄) 𝑇) 𝑆) (𝑃 𝑆) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇))))))
10063, 97, 99mpbi2and 708 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
1011, 2, 7, 19, 8atmod3i1 36867 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑄 𝑇)) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) = ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
1023, 5, 47, 51, 81, 101syl131anc 1377 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) = ((𝑃 𝑆) (𝑃 ((𝑄 𝑅) (𝑄 𝑇)))))
103100, 102breqtrrd 5091 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))))
104 simp13 1199 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
1051, 19latmcl 17652 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1064, 47, 49, 105syl3anc 1365 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
1071, 7, 8hlatjcl 36370 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
1083, 22, 25, 107syl3anc 1365 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) ∈ (Base‘𝐾))
1091, 2, 19latmlem2 17682 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈))))
1104, 106, 108, 24, 109syl13anc 1366 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈))))
111104, 110mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))) ((𝑄 𝑅) (𝑅 𝑈)))
112 hlol 36364 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
1133, 112syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
1141, 19latm12 36233 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾))) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) = ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))))
115113, 47, 24, 49, 114syl13anc 1366 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) = ((𝑄 𝑅) ((𝑃 𝑆) (𝑄 𝑇))))
1162, 7, 8hlatlej2 36379 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → 𝑅 (𝑄 𝑅))
1173, 6, 22, 116syl3anc 1365 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 (𝑄 𝑅))
1181, 2, 7, 19, 8atmod3i1 36867 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑄 𝑅)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
1193, 22, 24, 27, 117, 118syl131anc 1377 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 ((𝑄 𝑅) 𝑈)) = ((𝑄 𝑅) (𝑅 𝑈)))
120111, 115, 1193brtr4d 5095 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)))
1211, 2, 7latjlej2 17666 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) ∈ (Base‘𝐾) ∧ (𝑅 ((𝑄 𝑅) 𝑈)) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
1224, 53, 59, 45, 121syl13anc 1366 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇))) (𝑅 ((𝑄 𝑅) 𝑈)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈)))))
123120, 122mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑃 𝑆) ((𝑄 𝑅) (𝑄 𝑇)))) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1241, 2, 4, 21, 55, 61, 103, 123lattrd 17658 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))))
1251, 7latj13 17698 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾))) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1264, 45, 57, 29, 125syl13anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 ((𝑄 𝑅) 𝑈))) = (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
127124, 126breqtrd 5089 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)))
1281, 2, 7, 19latmlej22 17693 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆))
1294, 18, 15, 27, 128syl13anc 1366 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆))
1301, 7latjcl 17651 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1314, 29, 31, 130syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾))
1321, 2, 19latlem12 17678 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾))) → (((((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆)) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
1334, 21, 131, 33, 132syl13anc 1366 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) (𝑅 𝑃)) ∧ (((𝑃 𝑄) 𝑇) 𝑆) (𝑈 𝑆)) ↔ (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆))))
134127, 129, 133mpbi2and 708 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1351, 2, 7, 19latmlej21 17692 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1364, 27, 24, 18, 135syl13anc 1366 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) (𝑈 𝑆))
1371, 2, 7, 19, 8atmod1i1m 36861 . . . 4 (((𝐾 ∈ HL ∧ 𝑈𝐴) ∧ ((𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) ∧ ((𝑄 𝑅) 𝑈) (𝑈 𝑆)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
1383, 25, 24, 31, 33, 136, 137syl231anc 1384 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) = ((((𝑄 𝑅) 𝑈) (𝑅 𝑃)) (𝑈 𝑆)))
139134, 138breqtrrd 5091 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1402, 7, 8hlatlej2 36379 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1413, 11, 25, 140syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1421, 2, 19latmlem2 17682 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
1434, 27, 39, 24, 142syl13anc 1366 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑇 𝑈) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈))))
144141, 143mpd 15 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)))
1451, 2, 7latjlej1 17665 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑄 𝑅) 𝑈) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
1464, 29, 41, 35, 145syl13anc 1366 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑄 𝑅) (𝑇 𝑈)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
147144, 146mpd 15 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
1481, 2, 4, 21, 37, 43, 139, 147lattrd 17658 1 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  cfv 6352  (class class class)co 7148  Basecbs 16473  lecple 16562  joincjn 17544  meetcmee 17545  Latclat 17645  OLcol 36177  Atomscatm 36266  HLchlt 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-lat 17646  df-clat 17708  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-psubsp 36506  df-pmap 36507  df-padd 36799
This theorem is referenced by:  dalawlem8  36881
  Copyright terms: Public domain W3C validator