Proof of Theorem cdlemk7
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
2 | | simp2 1135 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
3 | | simp311 1318 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐹 ≠ ( I ↾ 𝐵)) |
4 | | simp312 1319 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐺 ≠ ( I ↾ 𝐵)) |
5 | | simp32 1208 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
6 | | simp33 1209 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝑋) ≠ (𝑅‘𝐹)) |
7 | 5, 6 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) |
8 | | cdlemk.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
9 | | cdlemk.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
10 | | cdlemk.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | | cdlemk.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | cdlemk.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | cdlemk.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | cdlemk.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
15 | | cdlemk.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cdlemk6 38778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ ((((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) ∨ (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))))) |
17 | 1, 2, 3, 4, 7, 16 | syl113anc 1380 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ≤ ((((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) ∨ (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))))) |
18 | | simp21l 1288 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑁 ∈ 𝑇) |
19 | | simp22 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
20 | | simp23 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
21 | 18, 19, 20 | 3jca 1126 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
22 | | cdlemk.s |
. . . . 5
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
23 | 8, 9, 10, 11, 12, 13, 14, 15, 22 | cdlemksv2 38788 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
24 | 1, 21, 3, 4, 5, 23 | syl113anc 1380 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
25 | | simp11 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
26 | | simp13 1203 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐺 ∈ 𝑇) |
27 | 9, 10, 11, 12, 13, 14 | trljat1 38107 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) |
28 | 25, 26, 19, 27 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) |
29 | 28 | oveq1d 7270 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
30 | 24, 29 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
31 | | simp11l 1282 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐾 ∈ HL) |
32 | 31 | hllatd 37305 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐾 ∈ Lat) |
33 | | simp12 1202 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) |
34 | | simp21r 1289 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑋 ∈ 𝑇) |
35 | 25, 33, 34 | 3jca 1126 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇)) |
36 | | simp313 1320 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑋 ≠ ( I ↾ 𝐵)) |
37 | 8, 9, 10, 11, 12, 13, 14, 15, 22 | cdlemksat 38787 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
38 | 35, 21, 3, 36, 6, 37 | syl113anc 1380 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐴) |
39 | 8, 11 | atbase 37230 |
. . . . 5
⊢ (((𝑆‘𝑋)‘𝑃) ∈ 𝐴 → ((𝑆‘𝑋)‘𝑃) ∈ 𝐵) |
40 | 38, 39 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) ∈ 𝐵) |
41 | | simp11r 1283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑊 ∈ 𝐻) |
42 | | simp22l 1290 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑃 ∈ 𝐴) |
43 | | cdlemk.v |
. . . . . 6
⊢ 𝑉 = (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) |
44 | 8, 9, 10, 11, 12, 13, 14, 15, 43 | cdlemkvcl 38783 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝑉 ∈ 𝐵) |
45 | 31, 41, 33, 26, 34, 42, 44 | syl231anc 1388 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑉 ∈ 𝐵) |
46 | 8, 10 | latjcom 18080 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑆‘𝑋)‘𝑃) ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) = (𝑉 ∨ ((𝑆‘𝑋)‘𝑃))) |
47 | 32, 40, 45, 46 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) = (𝑉 ∨ ((𝑆‘𝑋)‘𝑃))) |
48 | 43 | a1i 11 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → 𝑉 = (((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹))))) |
49 | 8, 9, 10, 11, 12, 13, 14, 15, 22 | cdlemksv2 38788 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) = ((𝑃 ∨ (𝑅‘𝑋)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹))))) |
50 | 35, 21, 3, 36, 6, 49 | syl113anc 1380 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) = ((𝑃 ∨ (𝑅‘𝑋)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹))))) |
51 | 9, 10, 11, 12, 13, 14 | trljat1 38107 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝑋)) = (𝑃 ∨ (𝑋‘𝑃))) |
52 | 25, 34, 19, 51 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑅‘𝑋)) = (𝑃 ∨ (𝑋‘𝑃))) |
53 | 9, 11, 12, 13 | ltrnat 38081 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑋‘𝑃) ∈ 𝐴) |
54 | 25, 34, 42, 53 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑋‘𝑃) ∈ 𝐴) |
55 | 10, 11 | hlatjcom 37309 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋‘𝑃) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → ((𝑋‘𝑃) ∨ 𝑃) = (𝑃 ∨ (𝑋‘𝑃))) |
56 | 31, 54, 42, 55 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑋‘𝑃) ∨ 𝑃) = (𝑃 ∨ (𝑋‘𝑃))) |
57 | 52, 56 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑅‘𝑋)) = ((𝑋‘𝑃) ∨ 𝑃)) |
58 | 9, 11, 12, 13 | ltrnat 38081 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑁‘𝑃) ∈ 𝐴) |
59 | 25, 18, 42, 58 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑁‘𝑃) ∈ 𝐴) |
60 | 34, 33 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑋 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇)) |
61 | 11, 12, 13, 14 | trlcocnvat 38665 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹)) → (𝑅‘(𝑋 ∘ ◡𝐹)) ∈ 𝐴) |
62 | 25, 60, 6, 61 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑅‘(𝑋 ∘ ◡𝐹)) ∈ 𝐴) |
63 | 10, 11 | hlatjcom 37309 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑁‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋 ∘ ◡𝐹)) ∈ 𝐴) → ((𝑁‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹))) = ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))) |
64 | 31, 59, 62, 63 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑁‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹))) = ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))) |
65 | 57, 64 | oveq12d 7273 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑃 ∨ (𝑅‘𝑋)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) = (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃)))) |
66 | 50, 65 | eqtrd 2778 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝑋)‘𝑃) = (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃)))) |
67 | 48, 66 | oveq12d 7273 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (𝑉 ∨ ((𝑆‘𝑋)‘𝑃)) = ((((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) ∨ (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))))) |
68 | 47, 67 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → (((𝑆‘𝑋)‘𝑃) ∨ 𝑉) = ((((𝐺‘𝑃) ∨ (𝑋‘𝑃)) ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∨ (𝑅‘(𝑋 ∘ ◡𝐹)))) ∨ (((𝑋‘𝑃) ∨ 𝑃) ∧ ((𝑅‘(𝑋 ∘ ◡𝐹)) ∨ (𝑁‘𝑃))))) |
69 | 17, 30, 68 | 3brtr4d 5102 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑋) ≠ (𝑅‘𝐹))) → ((𝑆‘𝐺)‘𝑃) ≤ (((𝑆‘𝑋)‘𝑃) ∨ 𝑉)) |