Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk7 Structured version   Visualization version   GIF version

Theorem cdlemk7 40831
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk.v 𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
Assertion
Ref Expression
cdlemk7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) 𝑉))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹,𝑖   𝑓,𝐺,𝑖   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   ,𝑖   ,𝑖   ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,𝑊   𝑓,𝑋,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑉(𝑓,𝑖)

Proof of Theorem cdlemk7
StepHypRef Expression
1 simp1 1135 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇))
2 simp2 1136 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
3 simp311 1319 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
4 simp312 1320 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐺 ≠ ( I ↾ 𝐵))
5 simp32 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑅𝐺) ≠ (𝑅𝐹))
6 simp33 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑅𝑋) ≠ (𝑅𝐹))
75, 6jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)))
8 cdlemk.b . . . 4 𝐵 = (Base‘𝐾)
9 cdlemk.l . . . 4 = (le‘𝐾)
10 cdlemk.j . . . 4 = (join‘𝐾)
11 cdlemk.a . . . 4 𝐴 = (Atoms‘𝐾)
12 cdlemk.h . . . 4 𝐻 = (LHyp‘𝐾)
13 cdlemk.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemk.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
15 cdlemk.m . . . 4 = (meet‘𝐾)
168, 9, 10, 11, 12, 13, 14, 15cdlemk6 40820 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)))) → ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))
171, 2, 3, 4, 7, 16syl113anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))
18 simp21l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑁𝑇)
19 simp22 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 simp23 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝑁))
2118, 19, 203jca 1127 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
22 cdlemk.s . . . . 5 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
238, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 40830 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
241, 21, 3, 4, 5, 23syl113anc 1381 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
25 simp11 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simp13 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐺𝑇)
279, 10, 11, 12, 13, 14trljat1 40149 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
2825, 26, 19, 27syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
2928oveq1d 7446 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) = ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
3024, 29eqtrd 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
31 simp11l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐾 ∈ HL)
3231hllatd 39346 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐾 ∈ Lat)
33 simp12 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝐹𝑇)
34 simp21r 1290 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑋𝑇)
3525, 33, 343jca 1127 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇))
36 simp313 1321 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑋 ≠ ( I ↾ 𝐵))
378, 9, 10, 11, 12, 13, 14, 15, 22cdlemksat 40829 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
3835, 21, 3, 36, 6, 37syl113anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) ∈ 𝐴)
398, 11atbase 39271 . . . . 5 (((𝑆𝑋)‘𝑃) ∈ 𝐴 → ((𝑆𝑋)‘𝑃) ∈ 𝐵)
4038, 39syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) ∈ 𝐵)
41 simp11r 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑊𝐻)
42 simp22l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑃𝐴)
43 cdlemk.v . . . . . 6 𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))
448, 9, 10, 11, 12, 13, 14, 15, 43cdlemkvcl 40825 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑉𝐵)
4531, 41, 33, 26, 34, 42, 44syl231anc 1389 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑉𝐵)
468, 10latjcom 18505 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑆𝑋)‘𝑃) ∈ 𝐵𝑉𝐵) → (((𝑆𝑋)‘𝑃) 𝑉) = (𝑉 ((𝑆𝑋)‘𝑃)))
4732, 40, 45, 46syl3anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (((𝑆𝑋)‘𝑃) 𝑉) = (𝑉 ((𝑆𝑋)‘𝑃)))
4843a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → 𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))))
498, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 40830 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑋𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) = ((𝑃 (𝑅𝑋)) ((𝑁𝑃) (𝑅‘(𝑋𝐹)))))
5035, 21, 3, 36, 6, 49syl113anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) = ((𝑃 (𝑅𝑋)) ((𝑁𝑃) (𝑅‘(𝑋𝐹)))))
519, 10, 11, 12, 13, 14trljat1 40149 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑋)) = (𝑃 (𝑋𝑃)))
5225, 34, 19, 51syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝑋)) = (𝑃 (𝑋𝑃)))
539, 11, 12, 13ltrnat 40123 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
5425, 34, 42, 53syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑋𝑃) ∈ 𝐴)
5510, 11hlatjcom 39350 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃) ∈ 𝐴𝑃𝐴) → ((𝑋𝑃) 𝑃) = (𝑃 (𝑋𝑃)))
5631, 54, 42, 55syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑋𝑃) 𝑃) = (𝑃 (𝑋𝑃)))
5752, 56eqtr4d 2778 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝑋)) = ((𝑋𝑃) 𝑃))
589, 11, 12, 13ltrnat 40123 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐴) → (𝑁𝑃) ∈ 𝐴)
5925, 18, 42, 58syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑁𝑃) ∈ 𝐴)
6034, 33jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑋𝑇𝐹𝑇))
6111, 12, 13, 14trlcocnvat 40707 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝐹𝑇) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) → (𝑅‘(𝑋𝐹)) ∈ 𝐴)
6225, 60, 6, 61syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑅‘(𝑋𝐹)) ∈ 𝐴)
6310, 11hlatjcom 39350 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑁𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐹)) ∈ 𝐴) → ((𝑁𝑃) (𝑅‘(𝑋𝐹))) = ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))
6431, 59, 62, 63syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑁𝑃) (𝑅‘(𝑋𝐹))) = ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))
6557, 64oveq12d 7449 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑃 (𝑅𝑋)) ((𝑁𝑃) (𝑅‘(𝑋𝐹)))) = (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃))))
6650, 65eqtrd 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝑋)‘𝑃) = (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃))))
6748, 66oveq12d 7449 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (𝑉 ((𝑆𝑋)‘𝑃)) = ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))
6847, 67eqtrd 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → (((𝑆𝑋)‘𝑃) 𝑉) = ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))
6917, 30, 683brtr4d 5180 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cmpt 5231   I cid 5582  ccnv 5688  cres 5691  ccom 5693  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  meetcmee 18370  Latclat 18489  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  cdlemk11  40832
  Copyright terms: Public domain W3C validator