Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk7 Structured version   Visualization version   GIF version

Theorem cdlemk7 40175
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐡 = (Baseβ€˜πΎ)
cdlemk.l ≀ = (leβ€˜πΎ)
cdlemk.j ∨ = (joinβ€˜πΎ)
cdlemk.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk.h 𝐻 = (LHypβ€˜πΎ)
cdlemk.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk.m ∧ = (meetβ€˜πΎ)
cdlemk.s 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
cdlemk.v 𝑉 = (((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹))))
Assertion
Ref Expression
cdlemk7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ 𝑉))
Distinct variable groups:   ∧ ,𝑓   ∨ ,𝑓   𝑓,𝐹,𝑖   𝑓,𝐺,𝑖   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,π‘Š   ∧ ,𝑖   ≀ ,𝑖   ∨ ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,π‘Š   𝑓,𝑋,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐡(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   ≀ (𝑓)   𝑉(𝑓,𝑖)

Proof of Theorem cdlemk7
StepHypRef Expression
1 simp1 1133 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
2 simp2 1134 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
3 simp311 1317 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
4 simp312 1318 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
5 simp32 1207 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))
6 simp33 1208 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))
75, 6jca 511 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)))
8 cdlemk.b . . . 4 𝐡 = (Baseβ€˜πΎ)
9 cdlemk.l . . . 4 ≀ = (leβ€˜πΎ)
10 cdlemk.j . . . 4 ∨ = (joinβ€˜πΎ)
11 cdlemk.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
12 cdlemk.h . . . 4 𝐻 = (LHypβ€˜πΎ)
13 cdlemk.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
14 cdlemk.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
15 cdlemk.m . . . 4 ∧ = (meetβ€˜πΎ)
168, 9, 10, 11, 12, 13, 14, 15cdlemk6 40164 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) ∨ (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))))
171, 2, 3, 4, 7, 16syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) ∨ (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))))
18 simp21l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑁 ∈ 𝑇)
19 simp22 1204 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
20 simp23 1205 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
2118, 19, 203jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
22 cdlemk.s . . . . 5 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
238, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 40174 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
241, 21, 3, 4, 5, 23syl113anc 1379 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
25 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
26 simp13 1202 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐺 ∈ 𝑇)
279, 10, 11, 12, 13, 14trljat1 39493 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
2825, 26, 19, 27syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑃 ∨ (π‘…β€˜πΊ)) = (𝑃 ∨ (πΊβ€˜π‘ƒ)))
2928oveq1d 7416 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))) = ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
3024, 29eqtrd 2764 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) = ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
31 simp11l 1281 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐾 ∈ HL)
3231hllatd 38690 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐾 ∈ Lat)
33 simp12 1201 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝐹 ∈ 𝑇)
34 simp21r 1288 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑋 ∈ 𝑇)
3525, 33, 343jca 1125 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇))
36 simp313 1319 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑋 β‰  ( I β†Ύ 𝐡))
378, 9, 10, 11, 12, 13, 14, 15, 22cdlemksat 40173 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴)
3835, 21, 3, 36, 6, 37syl113anc 1379 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴)
398, 11atbase 38615 . . . . 5 (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐴 β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐡)
4038, 39syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐡)
41 simp11r 1282 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ π‘Š ∈ 𝐻)
42 simp22l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑃 ∈ 𝐴)
43 cdlemk.v . . . . . 6 𝑉 = (((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹))))
448, 9, 10, 11, 12, 13, 14, 15, 43cdlemkvcl 40169 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) β†’ 𝑉 ∈ 𝐡)
4531, 41, 33, 26, 34, 42, 44syl231anc 1387 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑉 ∈ 𝐡)
468, 10latjcom 18399 . . . 4 ((𝐾 ∈ Lat ∧ ((π‘†β€˜π‘‹)β€˜π‘ƒ) ∈ 𝐡 ∧ 𝑉 ∈ 𝐡) β†’ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ 𝑉) = (𝑉 ∨ ((π‘†β€˜π‘‹)β€˜π‘ƒ)))
4732, 40, 45, 46syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ 𝑉) = (𝑉 ∨ ((π‘†β€˜π‘‹)β€˜π‘ƒ)))
4843a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ 𝑉 = (((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))))
498, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 40174 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘‹)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))))
5035, 21, 3, 36, 6, 49syl113anc 1379 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘‹)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))))
519, 10, 11, 12, 13, 14trljat1 39493 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜π‘‹)) = (𝑃 ∨ (π‘‹β€˜π‘ƒ)))
5225, 34, 19, 51syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑃 ∨ (π‘…β€˜π‘‹)) = (𝑃 ∨ (π‘‹β€˜π‘ƒ)))
539, 11, 12, 13ltrnat 39467 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (π‘‹β€˜π‘ƒ) ∈ 𝐴)
5425, 34, 42, 53syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘‹β€˜π‘ƒ) ∈ 𝐴)
5510, 11hlatjcom 38694 . . . . . . . 8 ((𝐾 ∈ HL ∧ (π‘‹β€˜π‘ƒ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ ((π‘‹β€˜π‘ƒ) ∨ 𝑃) = (𝑃 ∨ (π‘‹β€˜π‘ƒ)))
5631, 54, 42, 55syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘‹β€˜π‘ƒ) ∨ 𝑃) = (𝑃 ∨ (π‘‹β€˜π‘ƒ)))
5752, 56eqtr4d 2767 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑃 ∨ (π‘…β€˜π‘‹)) = ((π‘‹β€˜π‘ƒ) ∨ 𝑃))
589, 11, 12, 13ltrnat 39467 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (π‘β€˜π‘ƒ) ∈ 𝐴)
5925, 18, 42, 58syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘β€˜π‘ƒ) ∈ 𝐴)
6034, 33jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑋 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇))
6111, 12, 13, 14trlcocnvat 40051 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ)) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐹)) ∈ 𝐴)
6225, 60, 6, 61syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (π‘…β€˜(𝑋 ∘ ◑𝐹)) ∈ 𝐴)
6310, 11hlatjcom 38694 . . . . . . 7 ((𝐾 ∈ HL ∧ (π‘β€˜π‘ƒ) ∈ 𝐴 ∧ (π‘…β€˜(𝑋 ∘ ◑𝐹)) ∈ 𝐴) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹))) = ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))
6431, 59, 62, 63syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹))) = ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))
6557, 64oveq12d 7419 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((𝑃 ∨ (π‘…β€˜π‘‹)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) = (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ))))
6650, 65eqtrd 2764 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜π‘‹)β€˜π‘ƒ) = (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ))))
6748, 66oveq12d 7419 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (𝑉 ∨ ((π‘†β€˜π‘‹)β€˜π‘ƒ)) = ((((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) ∨ (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))))
6847, 67eqtrd 2764 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ 𝑉) = ((((πΊβ€˜π‘ƒ) ∨ (π‘‹β€˜π‘ƒ)) ∧ ((π‘…β€˜(𝐺 ∘ ◑𝐹)) ∨ (π‘…β€˜(𝑋 ∘ ◑𝐹)))) ∨ (((π‘‹β€˜π‘ƒ) ∨ 𝑃) ∧ ((π‘…β€˜(𝑋 ∘ ◑𝐹)) ∨ (π‘β€˜π‘ƒ)))))
6917, 30, 683brtr4d 5170 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝑋 β‰  ( I β†Ύ 𝐡)) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘‹) β‰  (π‘…β€˜πΉ))) β†’ ((π‘†β€˜πΊ)β€˜π‘ƒ) ≀ (((π‘†β€˜π‘‹)β€˜π‘ƒ) ∨ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138   ↦ cmpt 5221   I cid 5563  β—‘ccnv 5665   β†Ύ cres 5668   ∘ ccom 5670  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  meetcmee 18264  Latclat 18383  Atomscatm 38589  HLchlt 38676  LHypclh 39311  LTrncltrn 39428  trLctrl 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-riotaBAD 38279
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-undef 8253  df-map 8817  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lvols 38827  df-lines 38828  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315  df-laut 39316  df-ldil 39431  df-ltrn 39432  df-trl 39486
This theorem is referenced by:  cdlemk11  40176
  Copyright terms: Public domain W3C validator