| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isosctr | Structured version Visualization version GIF version | ||
| Description: Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| isosctrlem3.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| Ref | Expression |
|---|---|
| isosctr | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1204 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ∈ ℂ) | |
| 2 | simp13 1206 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐶 ∈ ℂ) | |
| 3 | 1, 2 | subcld 11559 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ∈ ℂ) |
| 4 | simp12 1205 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐵 ∈ ℂ) | |
| 5 | 4, 2 | subcld 11559 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐵 − 𝐶) ∈ ℂ) |
| 6 | simp21 1207 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ≠ 𝐶) | |
| 7 | 1, 2, 6 | subne0d 11568 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ≠ 0) |
| 8 | simp22 1208 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐵 ≠ 𝐶) | |
| 9 | 4, 2, 8 | subne0d 11568 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐵 − 𝐶) ≠ 0) |
| 10 | simp23 1209 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ≠ 𝐵) | |
| 11 | subcan2 11473 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
| 13 | 12 | necon3bid 2971 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) ≠ (𝐵 − 𝐶) ↔ 𝐴 ≠ 𝐵)) |
| 14 | 10, 13 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |
| 15 | simp3 1138 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) | |
| 16 | isosctrlem3.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 17 | 16 | isosctrlem3 26757 | . . 3 ⊢ ((((𝐴 − 𝐶) ∈ ℂ ∧ (𝐵 − 𝐶) ∈ ℂ) ∧ ((𝐴 − 𝐶) ≠ 0 ∧ (𝐵 − 𝐶) ≠ 0 ∧ (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶))) |
| 18 | 3, 5, 7, 9, 14, 15, 17 | syl231anc 1392 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶))) |
| 19 | 1, 2 | negsubdi2d 11575 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → -(𝐴 − 𝐶) = (𝐶 − 𝐴)) |
| 20 | 4, 1, 2 | nnncan2d 11594 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐵 − 𝐶) − (𝐴 − 𝐶)) = (𝐵 − 𝐴)) |
| 21 | 19, 20 | oveq12d 7413 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴))) |
| 22 | 1, 4, 2 | nnncan2d 11594 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| 23 | 4, 2 | negsubdi2d 11575 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → -(𝐵 − 𝐶) = (𝐶 − 𝐵)) |
| 24 | 22, 23 | oveq12d 7413 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
| 25 | 18, 21, 24 | 3eqtr3d 2773 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∖ cdif 3919 {csn 4597 ‘cfv 6519 (class class class)co 7395 ∈ cmpo 7397 ℂcc 11092 0cc0 11094 − cmin 11431 -cneg 11432 / cdiv 11861 ℑcim 15090 abscabs 15226 logclog 26490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7719 ax-inf2 9620 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 ax-pre-sup 11172 ax-addf 11173 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7352 df-ov 7398 df-oprab 7399 df-mpo 7400 df-of 7661 df-om 7852 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8270 df-wrecs 8301 df-recs 8350 df-rdg 8388 df-1o 8444 df-2o 8445 df-er 8683 df-map 8813 df-pm 8814 df-ixp 8883 df-en 8931 df-dom 8932 df-sdom 8933 df-fin 8934 df-fsupp 9339 df-fi 9388 df-sup 9419 df-inf 9420 df-oi 9489 df-card 9918 df-pnf 11236 df-mnf 11237 df-xr 11238 df-ltxr 11239 df-le 11240 df-sub 11433 df-neg 11434 df-div 11862 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12469 df-z 12556 df-dec 12676 df-uz 12820 df-q 12934 df-rp 12978 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13336 df-ioc 13337 df-ico 13338 df-icc 13339 df-fz 13495 df-fzo 13642 df-fl 13780 df-mod 13858 df-seq 13993 df-exp 14053 df-fac 14265 df-bc 14294 df-hash 14322 df-shft 15059 df-cj 15091 df-re 15092 df-im 15093 df-sqrt 15227 df-abs 15228 df-limsup 15463 df-clim 15480 df-rlim 15481 df-sum 15679 df-ef 16059 df-sin 16061 df-cos 16062 df-pi 16064 df-struct 17143 df-sets 17160 df-slot 17178 df-ndx 17190 df-base 17206 df-ress 17227 df-plusg 17259 df-mulr 17260 df-starv 17261 df-sca 17262 df-vsca 17263 df-ip 17264 df-tset 17265 df-ple 17266 df-ds 17268 df-unif 17269 df-hom 17270 df-cco 17271 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18737 df-mulg 19026 df-cntz 19275 df-cmn 19738 df-psmet 21282 df-xmet 21283 df-met 21284 df-bl 21285 df-mopn 21286 df-fbas 21287 df-fg 21288 df-cnfld 21291 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24234 df-ms 24235 df-tms 24236 df-cncf 24797 df-limc 25794 df-dv 25795 df-log 26492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |