MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctr Structured version   Visualization version   GIF version

Theorem isosctr 26903
Description: Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
Hypothesis
Ref Expression
isosctrlem3.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
isosctr (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐶𝐴)𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹(𝐶𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem isosctr
StepHypRef Expression
1 simp11 1203 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐴 ∈ ℂ)
2 simp13 1205 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐶 ∈ ℂ)
31, 2subcld 11653 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (𝐴𝐶) ∈ ℂ)
4 simp12 1204 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐵 ∈ ℂ)
54, 2subcld 11653 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (𝐵𝐶) ∈ ℂ)
6 simp21 1206 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐴𝐶)
71, 2, 6subne0d 11662 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (𝐴𝐶) ≠ 0)
8 simp22 1207 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐵𝐶)
94, 2, 8subne0d 11662 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (𝐵𝐶) ≠ 0)
10 simp23 1208 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → 𝐴𝐵)
11 subcan2 11567 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵))
12113ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵))
1312necon3bid 2991 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐴𝐶) ≠ (𝐵𝐶) ↔ 𝐴𝐵))
1410, 13mpbird 257 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (𝐴𝐶) ≠ (𝐵𝐶))
15 simp3 1138 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶)))
16 isosctrlem3.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
1716isosctrlem3 26902 . . 3 ((((𝐴𝐶) ∈ ℂ ∧ (𝐵𝐶) ∈ ℂ) ∧ ((𝐴𝐶) ≠ 0 ∧ (𝐵𝐶) ≠ 0 ∧ (𝐴𝐶) ≠ (𝐵𝐶)) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (-(𝐴𝐶)𝐹((𝐵𝐶) − (𝐴𝐶))) = (((𝐴𝐶) − (𝐵𝐶))𝐹-(𝐵𝐶)))
183, 5, 7, 9, 14, 15, 17syl231anc 1390 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (-(𝐴𝐶)𝐹((𝐵𝐶) − (𝐴𝐶))) = (((𝐴𝐶) − (𝐵𝐶))𝐹-(𝐵𝐶)))
191, 2negsubdi2d 11669 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → -(𝐴𝐶) = (𝐶𝐴))
204, 1, 2nnncan2d 11688 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐵𝐶) − (𝐴𝐶)) = (𝐵𝐴))
2119, 20oveq12d 7470 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (-(𝐴𝐶)𝐹((𝐵𝐶) − (𝐴𝐶))) = ((𝐶𝐴)𝐹(𝐵𝐴)))
221, 4, 2nnncan2d 11688 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
234, 2negsubdi2d 11669 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → -(𝐵𝐶) = (𝐶𝐵))
2422, 23oveq12d 7470 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → (((𝐴𝐶) − (𝐵𝐶))𝐹-(𝐵𝐶)) = ((𝐴𝐵)𝐹(𝐶𝐵)))
2518, 21, 243eqtr3d 2788 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐶𝐴)𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹(𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3974  {csn 4649  cfv 6577  (class class class)co 7452  cmpo 7454  cc 11186  0cc0 11188  cmin 11525  -cneg 11526   / cdiv 11953  cim 15165  abscabs 15301  logclog 26635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5305  ax-sep 5319  ax-nul 5326  ax-pow 5385  ax-pr 5449  ax-un 7774  ax-inf2 9714  ax-cnex 11244  ax-resscn 11245  ax-1cn 11246  ax-icn 11247  ax-addcl 11248  ax-addrcl 11249  ax-mulcl 11250  ax-mulrcl 11251  ax-mulcom 11252  ax-addass 11253  ax-mulass 11254  ax-distr 11255  ax-i2m1 11256  ax-1ne0 11257  ax-1rid 11258  ax-rnegex 11259  ax-rrecex 11260  ax-cnre 11261  ax-pre-lttri 11262  ax-pre-lttrn 11263  ax-pre-ltadd 11264  ax-pre-mulgt0 11265  ax-pre-sup 11266  ax-addf 11267
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3445  df-v 3491  df-sbc 3806  df-csb 3923  df-dif 3980  df-un 3982  df-in 3984  df-ss 3994  df-pss 3997  df-nul 4354  df-if 4550  df-pw 4625  df-sn 4650  df-pr 4652  df-tp 4654  df-op 4656  df-uni 4934  df-int 4973  df-iun 5019  df-iin 5020  df-br 5169  df-opab 5231  df-mpt 5252  df-tr 5286  df-id 5595  df-eprel 5601  df-po 5609  df-so 5610  df-fr 5654  df-se 5655  df-we 5656  df-xp 5708  df-rel 5709  df-cnv 5710  df-co 5711  df-dm 5712  df-rn 5713  df-res 5714  df-ima 5715  df-pred 6336  df-ord 6402  df-on 6403  df-lim 6404  df-suc 6405  df-iota 6529  df-fun 6579  df-fn 6580  df-f 6581  df-f1 6582  df-fo 6583  df-f1o 6584  df-fv 6585  df-isom 6586  df-riota 7408  df-ov 7455  df-oprab 7456  df-mpo 7457  df-of 7718  df-om 7908  df-1st 8034  df-2nd 8035  df-supp 8206  df-frecs 8326  df-wrecs 8357  df-recs 8431  df-rdg 8470  df-1o 8526  df-2o 8527  df-er 8767  df-map 8890  df-pm 8891  df-ixp 8960  df-en 9008  df-dom 9009  df-sdom 9010  df-fin 9011  df-fsupp 9436  df-fi 9484  df-sup 9515  df-inf 9516  df-oi 9583  df-card 10012  df-pnf 11330  df-mnf 11331  df-xr 11332  df-ltxr 11333  df-le 11334  df-sub 11527  df-neg 11528  df-div 11954  df-nn 12300  df-2 12362  df-3 12363  df-4 12364  df-5 12365  df-6 12366  df-7 12367  df-8 12368  df-9 12369  df-n0 12560  df-z 12647  df-dec 12767  df-uz 12912  df-q 13024  df-rp 13068  df-xneg 13187  df-xadd 13188  df-xmul 13189  df-ioo 13423  df-ioc 13424  df-ico 13425  df-icc 13426  df-fz 13580  df-fzo 13724  df-fl 13860  df-mod 13938  df-seq 14071  df-exp 14131  df-fac 14341  df-bc 14370  df-hash 14398  df-shft 15134  df-cj 15166  df-re 15167  df-im 15168  df-sqrt 15302  df-abs 15303  df-limsup 15535  df-clim 15552  df-rlim 15553  df-sum 15753  df-ef 16133  df-sin 16135  df-cos 16136  df-pi 16138  df-struct 17215  df-sets 17232  df-slot 17250  df-ndx 17262  df-base 17280  df-ress 17309  df-plusg 17345  df-mulr 17346  df-starv 17347  df-sca 17348  df-vsca 17349  df-ip 17350  df-tset 17351  df-ple 17352  df-ds 17354  df-unif 17355  df-hom 17356  df-cco 17357  df-rest 17503  df-topn 17504  df-0g 17522  df-gsum 17523  df-topgen 17524  df-pt 17525  df-prds 17528  df-xrs 17583  df-qtop 17588  df-imas 17589  df-xps 17591  df-mre 17665  df-mrc 17666  df-acs 17668  df-mgm 18699  df-sgrp 18778  df-mnd 18794  df-submnd 18840  df-mulg 19129  df-cntz 19378  df-cmn 19845  df-psmet 21400  df-xmet 21401  df-met 21402  df-bl 21403  df-mopn 21404  df-fbas 21405  df-fg 21406  df-cnfld 21409  df-top 22942  df-topon 22959  df-topsp 22981  df-bases 22995  df-cld 23069  df-ntr 23070  df-cls 23071  df-nei 23148  df-lp 23186  df-perf 23187  df-cn 23277  df-cnp 23278  df-haus 23365  df-tx 23612  df-hmeo 23805  df-fil 23896  df-fm 23988  df-flim 23989  df-flf 23990  df-xms 24372  df-ms 24373  df-tms 24374  df-cncf 24944  df-limc 25942  df-dv 25943  df-log 26637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator