MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylani Structured version   Visualization version   GIF version

Theorem sylani 603
Description: A syllogism inference. (Contributed by NM, 2-May-1996.)
Hypotheses
Ref Expression
sylani.1 (𝜑𝜒)
sylani.2 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
sylani (𝜓 → ((𝜑𝜃) → 𝜏))

Proof of Theorem sylani
StepHypRef Expression
1 sylani.1 . . 3 (𝜑𝜒)
21a1i 11 . 2 (𝜓 → (𝜑𝜒))
3 sylani.2 . 2 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3syland 602 1 (𝜓 → ((𝜑𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  syl2ani  606  inf3lem2  9317  zorn2lem5  10187  uzwo  12580  supxrun  12979  lcmdvds  16241  cramer0  21747  csmdsymi  30597  matunitlindflem2  35701  pmapjoin  37793
  Copyright terms: Public domain W3C validator