| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylani | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 2-May-1996.) |
| Ref | Expression |
|---|---|
| sylani.1 | ⊢ (𝜑 → 𝜒) |
| sylani.2 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylani | ⊢ (𝜓 → ((𝜑 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylani.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | sylani.2 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | syland 603 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2ani 607 inf3lem2 9669 zorn2lem5 10540 uzwo 12953 supxrun 13358 lcmdvds 16645 cramer0 22696 csmdsymi 32353 matunitlindflem2 37624 pmapjoin 39854 |
| Copyright terms: Public domain | W3C validator |