Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjoin Structured version   Visualization version   GIF version

Theorem pmapjoin 36439
Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapjoin.b 𝐵 = (Base‘𝐾)
pmapjoin.j = (join‘𝐾)
pmapjoin.m 𝑀 = (pmap‘𝐾)
pmapjoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjoin ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))

Proof of Theorem pmapjoin
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 475 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾))
21a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾)))
3 pmapjoin.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2778 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 35876 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
6 eqid 2778 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
7 pmapjoin.j . . . . . . . . . . 11 = (join‘𝐾)
83, 6, 7latlej1 17528 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
98adantr 473 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
10 simpl1 1171 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
11 simpr 477 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
12 simpl2 1172 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
133, 7latjcl 17519 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1413adantr 473 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
153, 6lattr 17524 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
1610, 11, 12, 14, 15syl13anc 1352 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
179, 16mpan2d 681 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)))
1817expimpd 446 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
195, 18sylani 594 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
202, 19jcad 505 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
21 simpl 475 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾))
2221a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾)))
233, 6, 7latlej2 17529 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
2423adantr 473 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
25 simpl3 1173 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
263, 6lattr 17524 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2710, 11, 25, 14, 26syl13anc 1352 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2824, 27mpan2d 681 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌𝑝(le‘𝐾)(𝑋 𝑌)))
2928expimpd 446 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
305, 29sylani 594 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
3122, 30jcad 505 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
3220, 31jaod 845 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
33 simpl 475 . . . . . 6 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾))
3433a1i 11 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾)))
35 pmapjoin.m . . . . . . . . . . . . . 14 𝑀 = (pmap‘𝐾)
363, 6, 4, 35elpmap 36345 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
37363adant3 1112 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
383, 6, 4, 35elpmap 36345 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
39383adant2 1111 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
4037, 39anbi12d 621 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌))))
41 an4 643 . . . . . . . . . . 11 (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)))
4240, 41syl6bb 279 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
4342adantr 473 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
443, 4atbase 35876 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
453, 4atbase 35876 . . . . . . . . . . 11 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
4644, 45anim12i 603 . . . . . . . . . 10 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑞𝐵𝑟𝐵))
47 simpll1 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝐾 ∈ Lat)
48 simprl 758 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
49 simpll2 1193 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑋𝐵)
50 simprr 760 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
51 simpll3 1194 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑌𝐵)
523, 6, 7latjlej12 17535 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑞𝐵𝑋𝐵) ∧ (𝑟𝐵𝑌𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
5347, 48, 49, 50, 51, 52syl122anc 1359 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
54 simplr 756 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑝𝐵)
553, 7latjcl 17519 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞 𝑟) ∈ 𝐵)
5647, 48, 50, 55syl3anc 1351 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑞 𝑟) ∈ 𝐵)
5713ad2antrr 713 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑋 𝑌) ∈ 𝐵)
583, 6lattr 17524 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑝𝐵 ∧ (𝑞 𝑟) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
5947, 54, 56, 57, 58syl13anc 1352 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6059expcomd 409 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞 𝑟)(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6153, 60syld 47 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6261expimpd 446 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞𝐵𝑟𝐵) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6346, 62sylani 594 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6443, 63sylbid 232 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6564rexlimdvv 3238 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6665expimpd 446 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
675, 66sylani 594 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6834, 67jcad 505 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
6932, 68jaod 845 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
70 simp1 1116 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
713, 4, 35pmapssat 36346 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
72713adant3 1112 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
733, 4, 35pmapssat 36346 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
74733adant2 1111 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
75 pmapjoin.p . . . . . 6 + = (+𝑃𝐾)
766, 7, 4, 75elpadd 36386 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
7770, 72, 74, 76syl3anc 1351 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
783, 6, 4, 35elpmap 36345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
79783adant3 1112 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
803, 6, 4, 35elpmap 36345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
81803adant2 1111 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
8279, 81orbi12d 902 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ↔ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌))))
8382orbi1d 900 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
8477, 83bitrd 271 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
853, 6, 4, 35elpmap 36345 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8670, 13, 85syl2anc 576 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8769, 84, 863imtr4d 286 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) → 𝑝 ∈ (𝑀‘(𝑋 𝑌))))
8887ssrdv 3864 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wrex 3089  wss 3829   class class class wbr 4929  cfv 6188  (class class class)co 6976  Basecbs 16339  lecple 16428  joincjn 17412  Latclat 17513  Atomscatm 35850  pmapcpmap 36084  +𝑃cpadd 36382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-poset 17414  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-lat 17514  df-ats 35854  df-pmap 36091  df-padd 36383
This theorem is referenced by:  pmapjat1  36440  hlmod1i  36443  paddunN  36514  pl42lem2N  36567
  Copyright terms: Public domain W3C validator