Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjoin Structured version   Visualization version   GIF version

Theorem pmapjoin 39835
Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapjoin.b 𝐵 = (Base‘𝐾)
pmapjoin.j = (join‘𝐾)
pmapjoin.m 𝑀 = (pmap‘𝐾)
pmapjoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjoin ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))

Proof of Theorem pmapjoin
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾))
21a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾)))
3 pmapjoin.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2735 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39271 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
6 eqid 2735 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
7 pmapjoin.j . . . . . . . . . . 11 = (join‘𝐾)
83, 6, 7latlej1 18506 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
98adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
10 simpl1 1190 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
11 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
12 simpl2 1191 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
133, 7latjcl 18497 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1413adantr 480 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
153, 6lattr 18502 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
1610, 11, 12, 14, 15syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
179, 16mpan2d 694 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)))
1817expimpd 453 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
195, 18sylani 604 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
202, 19jcad 512 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
21 simpl 482 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾))
2221a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾)))
233, 6, 7latlej2 18507 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
2423adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
25 simpl3 1192 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
263, 6lattr 18502 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2710, 11, 25, 14, 26syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2824, 27mpan2d 694 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌𝑝(le‘𝐾)(𝑋 𝑌)))
2928expimpd 453 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
305, 29sylani 604 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
3122, 30jcad 512 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
3220, 31jaod 859 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
33 simpl 482 . . . . . 6 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾))
3433a1i 11 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾)))
35 pmapjoin.m . . . . . . . . . . . . . 14 𝑀 = (pmap‘𝐾)
363, 6, 4, 35elpmap 39741 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
37363adant3 1131 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
383, 6, 4, 35elpmap 39741 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
39383adant2 1130 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
4037, 39anbi12d 632 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌))))
41 an4 656 . . . . . . . . . . 11 (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)))
4240, 41bitrdi 287 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
4342adantr 480 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
443, 4atbase 39271 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
453, 4atbase 39271 . . . . . . . . . . 11 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
4644, 45anim12i 613 . . . . . . . . . 10 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑞𝐵𝑟𝐵))
47 simpll1 1211 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝐾 ∈ Lat)
48 simprl 771 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
49 simpll2 1212 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑋𝐵)
50 simprr 773 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
51 simpll3 1213 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑌𝐵)
523, 6, 7latjlej12 18513 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑞𝐵𝑋𝐵) ∧ (𝑟𝐵𝑌𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
5347, 48, 49, 50, 51, 52syl122anc 1378 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
54 simplr 769 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑝𝐵)
553, 7latjcl 18497 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞 𝑟) ∈ 𝐵)
5647, 48, 50, 55syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑞 𝑟) ∈ 𝐵)
5713ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑋 𝑌) ∈ 𝐵)
583, 6lattr 18502 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑝𝐵 ∧ (𝑞 𝑟) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
5947, 54, 56, 57, 58syl13anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6059expcomd 416 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞 𝑟)(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6153, 60syld 47 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6261expimpd 453 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞𝐵𝑟𝐵) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6346, 62sylani 604 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6443, 63sylbid 240 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6564rexlimdvv 3210 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6665expimpd 453 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
675, 66sylani 604 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6834, 67jcad 512 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
6932, 68jaod 859 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
70 simp1 1135 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
713, 4, 35pmapssat 39742 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
72713adant3 1131 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
733, 4, 35pmapssat 39742 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
74733adant2 1130 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
75 pmapjoin.p . . . . . 6 + = (+𝑃𝐾)
766, 7, 4, 75elpadd 39782 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
7770, 72, 74, 76syl3anc 1370 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
783, 6, 4, 35elpmap 39741 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
79783adant3 1131 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
803, 6, 4, 35elpmap 39741 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
81803adant2 1130 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
8279, 81orbi12d 918 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ↔ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌))))
8382orbi1d 916 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
8477, 83bitrd 279 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
853, 6, 4, 35elpmap 39741 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8670, 13, 85syl2anc 584 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8769, 84, 863imtr4d 294 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) → 𝑝 ∈ (𝑀‘(𝑋 𝑌))))
8887ssrdv 4001 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  Latclat 18489  Atomscatm 39245  pmapcpmap 39480  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-lat 18490  df-ats 39249  df-pmap 39487  df-padd 39779
This theorem is referenced by:  pmapjat1  39836  hlmod1i  39839  paddunN  39910  pl42lem2N  39963
  Copyright terms: Public domain W3C validator