Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjoin Structured version   Visualization version   GIF version

Theorem pmapjoin 37003
Description: The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapjoin.b 𝐵 = (Base‘𝐾)
pmapjoin.j = (join‘𝐾)
pmapjoin.m 𝑀 = (pmap‘𝐾)
pmapjoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjoin ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))

Proof of Theorem pmapjoin
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾))
21a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝 ∈ (Atoms‘𝐾)))
3 pmapjoin.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2821 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 36440 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
6 eqid 2821 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
7 pmapjoin.j . . . . . . . . . . 11 = (join‘𝐾)
83, 6, 7latlej1 17670 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
98adantr 483 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋(le‘𝐾)(𝑋 𝑌))
10 simpl1 1187 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝐾 ∈ Lat)
11 simpr 487 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
12 simpl2 1188 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑋𝐵)
133, 7latjcl 17661 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
1413adantr 483 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑋 𝑌) ∈ 𝐵)
153, 6lattr 17666 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
1610, 11, 12, 14, 15syl13anc 1368 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
179, 16mpan2d 692 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑋 𝑌)))
1817expimpd 456 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
195, 18sylani 605 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝(le‘𝐾)(𝑋 𝑌)))
202, 19jcad 515 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
21 simpl 485 . . . . . . 7 ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾))
2221a1i 11 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝 ∈ (Atoms‘𝐾)))
233, 6, 7latlej2 17671 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
2423adantr 483 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌(le‘𝐾)(𝑋 𝑌))
25 simpl3 1189 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → 𝑌𝐵)
263, 6lattr 17666 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2710, 11, 25, 14, 26syl13anc 1368 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑝(le‘𝐾)𝑌𝑌(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
2824, 27mpan2d 692 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (𝑝(le‘𝐾)𝑌𝑝(le‘𝐾)(𝑋 𝑌)))
2928expimpd 456 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
305, 29sylani 605 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → 𝑝(le‘𝐾)(𝑋 𝑌)))
3122, 30jcad 515 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
3220, 31jaod 855 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
33 simpl 485 . . . . . 6 ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾))
3433a1i 11 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝 ∈ (Atoms‘𝐾)))
35 pmapjoin.m . . . . . . . . . . . . . 14 𝑀 = (pmap‘𝐾)
363, 6, 4, 35elpmap 36909 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
37363adant3 1128 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋)))
383, 6, 4, 35elpmap 36909 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
39383adant2 1127 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑟 ∈ (𝑀𝑌) ↔ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)))
4037, 39anbi12d 632 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌))))
41 an4 654 . . . . . . . . . . 11 (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑞(le‘𝐾)𝑋) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑟(le‘𝐾)𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)))
4240, 41syl6bb 289 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
4342adantr 483 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) ↔ ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌))))
443, 4atbase 36440 . . . . . . . . . . 11 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
453, 4atbase 36440 . . . . . . . . . . 11 (𝑟 ∈ (Atoms‘𝐾) → 𝑟𝐵)
4644, 45anim12i 614 . . . . . . . . . 10 ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → (𝑞𝐵𝑟𝐵))
47 simpll1 1208 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝐾 ∈ Lat)
48 simprl 769 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
49 simpll2 1209 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑋𝐵)
50 simprr 771 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
51 simpll3 1210 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑌𝐵)
523, 6, 7latjlej12 17677 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑞𝐵𝑋𝐵) ∧ (𝑟𝐵𝑌𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
5347, 48, 49, 50, 51, 52syl122anc 1375 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)))
54 simplr 767 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → 𝑝𝐵)
553, 7latjcl 17661 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞 𝑟) ∈ 𝐵)
5647, 48, 50, 55syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑞 𝑟) ∈ 𝐵)
5713ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → (𝑋 𝑌) ∈ 𝐵)
583, 6lattr 17666 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑝𝐵 ∧ (𝑞 𝑟) ∈ 𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
5947, 54, 56, 57, 58syl13anc 1368 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑝(le‘𝐾)(𝑞 𝑟) ∧ (𝑞 𝑟)(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6059expcomd 419 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞 𝑟)(le‘𝐾)(𝑋 𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6153, 60syld 47 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6261expimpd 456 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞𝐵𝑟𝐵) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6346, 62sylani 605 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞(le‘𝐾)𝑋𝑟(le‘𝐾)𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6443, 63sylbid 242 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → ((𝑞 ∈ (𝑀𝑋) ∧ 𝑟 ∈ (𝑀𝑌)) → (𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌))))
6564rexlimdvv 3293 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐵) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6665expimpd 456 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝𝐵 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
675, 66sylani 605 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → 𝑝(le‘𝐾)(𝑋 𝑌)))
6834, 67jcad 515 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
6932, 68jaod 855 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) → (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
70 simp1 1132 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
713, 4, 35pmapssat 36910 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
72713adant3 1128 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
733, 4, 35pmapssat 36910 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
74733adant2 1127 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑀𝑌) ⊆ (Atoms‘𝐾))
75 pmapjoin.p . . . . . 6 + = (+𝑃𝐾)
766, 7, 4, 75elpadd 36950 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾) ∧ (𝑀𝑌) ⊆ (Atoms‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
7770, 72, 74, 76syl3anc 1367 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
783, 6, 4, 35elpmap 36909 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
79783adant3 1128 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑋) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋)))
803, 6, 4, 35elpmap 36909 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
81803adant2 1127 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀𝑌) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)))
8279, 81orbi12d 915 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ↔ ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌))))
8382orbi1d 913 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑝 ∈ (𝑀𝑋) ∨ 𝑝 ∈ (𝑀𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟))) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
8477, 83bitrd 281 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) ↔ (((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)𝑌)) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑌)𝑝(le‘𝐾)(𝑞 𝑟)))))
853, 6, 4, 35elpmap 36909 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8670, 13, 85syl2anc 586 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑌)) ↔ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑌))))
8769, 84, 863imtr4d 296 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑌)) → 𝑝 ∈ (𝑀‘(𝑋 𝑌))))
8887ssrdv 3973 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) + (𝑀𝑌)) ⊆ (𝑀‘(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  pmapcpmap 36648  +𝑃cpadd 36946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-poset 17556  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-lat 17656  df-ats 36418  df-pmap 36655  df-padd 36947
This theorem is referenced by:  pmapjat1  37004  hlmod1i  37007  paddunN  37078  pl42lem2N  37131
  Copyright terms: Public domain W3C validator