MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   GIF version

Theorem cramer0 22696
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramer0 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
2 cramer.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
32fveq2i 6909 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
41, 3eqtri 2765 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
5 fvoveq1 7454 . . . . . . . 8 (𝑁 = ∅ → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
64, 5eqtrid 2789 . . . . . . 7 (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat 𝑅)))
76adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat 𝑅)))
87eleq2d 2827 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ (Base‘(∅ Mat 𝑅))))
9 mat0dimbas0 22472 . . . . . . 7 (𝑅 ∈ CRing → (Base‘(∅ Mat 𝑅)) = {∅})
109eleq2d 2827 . . . . . 6 (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
1110adantl 481 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
128, 11bitrd 279 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ {∅}))
13 cramer.v . . . . . . . 8 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1413a1i 11 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑m 𝑁))
15 oveq2 7439 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
1615adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
17 fvex 6919 . . . . . . . 8 (Base‘𝑅) ∈ V
18 map0e 8922 . . . . . . . 8 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
1917, 18mp1i 13 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m ∅) = 1o)
2014, 16, 193eqtrd 2781 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = 1o)
2120eleq2d 2827 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 ∈ 1o))
22 el1o 8533 . . . . 5 (𝑌 ∈ 1o𝑌 = ∅)
2321, 22bitrdi 287 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 = ∅))
2412, 23anbi12d 632 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅)))
25 elsni 4643 . . . 4 (𝑋 ∈ {∅} → 𝑋 = ∅)
26 mpteq1 5235 . . . . . . . . . 10 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
27 mpt0 6710 . . . . . . . . . 10 (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅
2826, 27eqtrdi 2793 . . . . . . . . 9 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅)
2928eqeq2d 2748 . . . . . . . 8 (𝑁 = ∅ → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
3029ad2antrr 726 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
31 simplrl 777 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅)
32 simpr 484 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅)
3331, 32oveq12d 7449 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ · ∅))
34 cramer.x . . . . . . . . . . 11 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3534mavmul0 22558 . . . . . . . . . 10 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅ · ∅) = ∅)
3635ad2antrr 726 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅ · ∅) = ∅)
37 simpr 484 . . . . . . . . . . 11 ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅)
3837eqcomd 2743 . . . . . . . . . 10 ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ = 𝑌)
3938ad2antlr 727 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ = 𝑌)
4033, 36, 393eqtrd 2781 . . . . . . . 8 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌)
4140ex 412 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌))
4230, 41sylbid 240 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
4342a1d 25 . . . . 5 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
4443ex 412 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4525, 44sylani 604 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4624, 45sylbid 240 . 2 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
47463imp 1111 1 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  {csn 4626  cop 4632  cmpt 5225  cfv 6561  (class class class)co 7431  1oc1o 8499  m cmap 8866  Basecbs 17247  CRingccrg 20231  Unitcui 20355  /rcdvr 20400   Mat cmat 22411   maVecMul cmvmul 22546   matRepV cmatrepV 22563   maDet cmdat 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mat 22412  df-mvmul 22547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator