Proof of Theorem cramer0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cramer.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐴) | 
| 2 |  | cramer.a | . . . . . . . . . 10
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 3 | 2 | fveq2i 6909 | . . . . . . . . 9
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) | 
| 4 | 1, 3 | eqtri 2765 | . . . . . . . 8
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) | 
| 5 |  | fvoveq1 7454 | . . . . . . . 8
⊢ (𝑁 = ∅ →
(Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat
𝑅))) | 
| 6 | 4, 5 | eqtrid 2789 | . . . . . . 7
⊢ (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat
𝑅))) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat
𝑅))) | 
| 8 | 7 | eleq2d 2827 | . . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(∅ Mat 𝑅)))) | 
| 9 |  | mat0dimbas0 22472 | . . . . . . 7
⊢ (𝑅 ∈ CRing →
(Base‘(∅ Mat 𝑅)) = {∅}) | 
| 10 | 9 | eleq2d 2827 | . . . . . 6
⊢ (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat
𝑅)) ↔ 𝑋 ∈
{∅})) | 
| 11 | 10 | adantl 481 | . . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat
𝑅)) ↔ 𝑋 ∈
{∅})) | 
| 12 | 8, 11 | bitrd 279 | . . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {∅})) | 
| 13 |  | cramer.v | . . . . . . . 8
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | 
| 14 | 13 | a1i 11 | . . . . . . 7
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑m 𝑁)) | 
| 15 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑁 = ∅ →
((Base‘𝑅)
↑m 𝑁) =
((Base‘𝑅)
↑m ∅)) | 
| 16 | 15 | adantr 480 | . . . . . . 7
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) →
((Base‘𝑅)
↑m 𝑁) =
((Base‘𝑅)
↑m ∅)) | 
| 17 |  | fvex 6919 | . . . . . . . 8
⊢
(Base‘𝑅)
∈ V | 
| 18 |  | map0e 8922 | . . . . . . . 8
⊢
((Base‘𝑅)
∈ V → ((Base‘𝑅) ↑m ∅) =
1o) | 
| 19 | 17, 18 | mp1i 13 | . . . . . . 7
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) →
((Base‘𝑅)
↑m ∅) = 1o) | 
| 20 | 14, 16, 19 | 3eqtrd 2781 | . . . . . 6
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 =
1o) | 
| 21 | 20 | eleq2d 2827 | . . . . 5
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌 ∈ 𝑉 ↔ 𝑌 ∈ 1o)) | 
| 22 |  | el1o 8533 | . . . . 5
⊢ (𝑌 ∈ 1o ↔
𝑌 =
∅) | 
| 23 | 21, 22 | bitrdi 287 | . . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌 ∈ 𝑉 ↔ 𝑌 = ∅)) | 
| 24 | 12, 23 | anbi12d 632 | . . 3
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅))) | 
| 25 |  | elsni 4643 | . . . 4
⊢ (𝑋 ∈ {∅} → 𝑋 = ∅) | 
| 26 |  | mpteq1 5235 | . . . . . . . . . 10
⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) | 
| 27 |  | mpt0 6710 | . . . . . . . . . 10
⊢ (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) = ∅ | 
| 28 | 26, 27 | eqtrdi 2793 | . . . . . . . . 9
⊢ (𝑁 = ∅ → (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) = ∅) | 
| 29 | 28 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑁 = ∅ → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ 𝑍 = ∅)) | 
| 30 | 29 | ad2antrr 726 | . . . . . . 7
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ 𝑍 = ∅)) | 
| 31 |  | simplrl 777 | . . . . . . . . . 10
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅) | 
| 32 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅) | 
| 33 | 31, 32 | oveq12d 7449 | . . . . . . . . 9
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ ·
∅)) | 
| 34 |  | cramer.x | . . . . . . . . . . 11
⊢  · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) | 
| 35 | 34 | mavmul0 22558 | . . . . . . . . . 10
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅
·
∅) = ∅) | 
| 36 | 35 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅
·
∅) = ∅) | 
| 37 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅) | 
| 38 | 37 | eqcomd 2743 | . . . . . . . . . 10
⊢ ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ =
𝑌) | 
| 39 | 38 | ad2antlr 727 | . . . . . . . . 9
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ =
𝑌) | 
| 40 | 33, 36, 39 | 3eqtrd 2781 | . . . . . . . 8
⊢ ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌) | 
| 41 | 40 | ex 412 | . . . . . . 7
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌)) | 
| 42 | 30, 41 | sylbid 240 | . . . . . 6
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | 
| 43 | 42 | a1d 25 | . . . . 5
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) | 
| 44 | 43 | ex 412 | . . . 4
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) | 
| 45 | 25, 44 | sylani 604 | . . 3
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) | 
| 46 | 24, 45 | sylbid 240 | . 2
⊢ ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) | 
| 47 | 46 | 3imp 1111 | 1
⊢ (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) |