MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   GIF version

Theorem cramer0 20903
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramer0 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
2 cramer.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
32fveq2i 6449 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
41, 3eqtri 2802 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
5 fvoveq1 6945 . . . . . . . 8 (𝑁 = ∅ → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
64, 5syl5eq 2826 . . . . . . 7 (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat 𝑅)))
76adantr 474 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat 𝑅)))
87eleq2d 2845 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ (Base‘(∅ Mat 𝑅))))
9 mat0dimbas0 20677 . . . . . . 7 (𝑅 ∈ CRing → (Base‘(∅ Mat 𝑅)) = {∅})
109eleq2d 2845 . . . . . 6 (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
1110adantl 475 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
128, 11bitrd 271 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ {∅}))
13 cramer.v . . . . . . . 8 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
1413a1i 11 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁))
15 oveq2 6930 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 ∅))
1615adantr 474 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 ∅))
17 fvex 6459 . . . . . . . 8 (Base‘𝑅) ∈ V
18 map0e 8179 . . . . . . . 8 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑𝑚 ∅) = 1o)
1917, 18mp1i 13 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑𝑚 ∅) = 1o)
2014, 16, 193eqtrd 2818 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = 1o)
2120eleq2d 2845 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 ∈ 1o))
22 el1o 7863 . . . . 5 (𝑌 ∈ 1o𝑌 = ∅)
2321, 22syl6bb 279 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 = ∅))
2412, 23anbi12d 624 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅)))
25 elsni 4415 . . . 4 (𝑋 ∈ {∅} → 𝑋 = ∅)
26 mpteq1 4972 . . . . . . . . . 10 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
27 mpt0 6267 . . . . . . . . . 10 (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅
2826, 27syl6eq 2830 . . . . . . . . 9 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅)
2928eqeq2d 2788 . . . . . . . 8 (𝑁 = ∅ → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
3029ad2antrr 716 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
31 simplrl 767 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅)
32 simpr 479 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅)
3331, 32oveq12d 6940 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ · ∅))
34 cramer.x . . . . . . . . . . 11 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3534mavmul0 20763 . . . . . . . . . 10 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅ · ∅) = ∅)
3635ad2antrr 716 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅ · ∅) = ∅)
37 simpr 479 . . . . . . . . . . 11 ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅)
3837eqcomd 2784 . . . . . . . . . 10 ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ = 𝑌)
3938ad2antlr 717 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ = 𝑌)
4033, 36, 393eqtrd 2818 . . . . . . . 8 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌)
4140ex 403 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌))
4230, 41sylbid 232 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
4342a1d 25 . . . . 5 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
4443ex 403 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4525, 44sylani 597 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4624, 45sylbid 232 . 2 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
47463imp 1098 1 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  c0 4141  {csn 4398  cop 4404  cmpt 4965  cfv 6135  (class class class)co 6922  1oc1o 7836  𝑚 cmap 8140  Basecbs 16255  CRingccrg 18935  Unitcui 19026  /rcdvr 19069   Mat cmat 20617   maVecMul cmvmul 20751   matRepV cmatrepV 20768   maDet cmdat 20795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-hom 16362  df-cco 16363  df-0g 16488  df-prds 16494  df-pws 16496  df-sra 19569  df-rgmod 19570  df-dsmm 20475  df-frlm 20490  df-mat 20618  df-mvmul 20752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator