MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   GIF version

Theorem cramer0 22717
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramer0 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
2 cramer.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
32fveq2i 6923 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
41, 3eqtri 2768 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
5 fvoveq1 7471 . . . . . . . 8 (𝑁 = ∅ → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
64, 5eqtrid 2792 . . . . . . 7 (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat 𝑅)))
76adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat 𝑅)))
87eleq2d 2830 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ (Base‘(∅ Mat 𝑅))))
9 mat0dimbas0 22493 . . . . . . 7 (𝑅 ∈ CRing → (Base‘(∅ Mat 𝑅)) = {∅})
109eleq2d 2830 . . . . . 6 (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
1110adantl 481 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
128, 11bitrd 279 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ {∅}))
13 cramer.v . . . . . . . 8 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1413a1i 11 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑m 𝑁))
15 oveq2 7456 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
1615adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
17 fvex 6933 . . . . . . . 8 (Base‘𝑅) ∈ V
18 map0e 8940 . . . . . . . 8 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
1917, 18mp1i 13 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m ∅) = 1o)
2014, 16, 193eqtrd 2784 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = 1o)
2120eleq2d 2830 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 ∈ 1o))
22 el1o 8551 . . . . 5 (𝑌 ∈ 1o𝑌 = ∅)
2321, 22bitrdi 287 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 = ∅))
2412, 23anbi12d 631 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅)))
25 elsni 4665 . . . 4 (𝑋 ∈ {∅} → 𝑋 = ∅)
26 mpteq1 5259 . . . . . . . . . 10 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
27 mpt0 6722 . . . . . . . . . 10 (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅
2826, 27eqtrdi 2796 . . . . . . . . 9 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅)
2928eqeq2d 2751 . . . . . . . 8 (𝑁 = ∅ → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
3029ad2antrr 725 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
31 simplrl 776 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅)
32 simpr 484 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅)
3331, 32oveq12d 7466 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ · ∅))
34 cramer.x . . . . . . . . . . 11 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3534mavmul0 22579 . . . . . . . . . 10 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅ · ∅) = ∅)
3635ad2antrr 725 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅ · ∅) = ∅)
37 simpr 484 . . . . . . . . . . 11 ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅)
3837eqcomd 2746 . . . . . . . . . 10 ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ = 𝑌)
3938ad2antlr 726 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ = 𝑌)
4033, 36, 393eqtrd 2784 . . . . . . . 8 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌)
4140ex 412 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌))
4230, 41sylbid 240 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
4342a1d 25 . . . . 5 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
4443ex 412 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4525, 44sylani 603 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4624, 45sylbid 240 . 2 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
47463imp 1111 1 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  cop 4654  cmpt 5249  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Basecbs 17258  CRingccrg 20261  Unitcui 20381  /rcdvr 20426   Mat cmat 22432   maVecMul cmvmul 22567   matRepV cmatrepV 22584   maDet cmdat 22611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-mvmul 22568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator