MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   GIF version

Theorem cramer0 22076
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramer0 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
2 cramer.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
32fveq2i 6850 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
41, 3eqtri 2759 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
5 fvoveq1 7385 . . . . . . . 8 (𝑁 = ∅ → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
64, 5eqtrid 2783 . . . . . . 7 (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat 𝑅)))
76adantr 481 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat 𝑅)))
87eleq2d 2818 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ (Base‘(∅ Mat 𝑅))))
9 mat0dimbas0 21852 . . . . . . 7 (𝑅 ∈ CRing → (Base‘(∅ Mat 𝑅)) = {∅})
109eleq2d 2818 . . . . . 6 (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
1110adantl 482 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
128, 11bitrd 278 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ {∅}))
13 cramer.v . . . . . . . 8 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1413a1i 11 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑m 𝑁))
15 oveq2 7370 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
1615adantr 481 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
17 fvex 6860 . . . . . . . 8 (Base‘𝑅) ∈ V
18 map0e 8827 . . . . . . . 8 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
1917, 18mp1i 13 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m ∅) = 1o)
2014, 16, 193eqtrd 2775 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = 1o)
2120eleq2d 2818 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 ∈ 1o))
22 el1o 8446 . . . . 5 (𝑌 ∈ 1o𝑌 = ∅)
2321, 22bitrdi 286 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 = ∅))
2412, 23anbi12d 631 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅)))
25 elsni 4608 . . . 4 (𝑋 ∈ {∅} → 𝑋 = ∅)
26 mpteq1 5203 . . . . . . . . . 10 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
27 mpt0 6648 . . . . . . . . . 10 (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅
2826, 27eqtrdi 2787 . . . . . . . . 9 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅)
2928eqeq2d 2742 . . . . . . . 8 (𝑁 = ∅ → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
3029ad2antrr 724 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
31 simplrl 775 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅)
32 simpr 485 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅)
3331, 32oveq12d 7380 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ · ∅))
34 cramer.x . . . . . . . . . . 11 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3534mavmul0 21938 . . . . . . . . . 10 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅ · ∅) = ∅)
3635ad2antrr 724 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅ · ∅) = ∅)
37 simpr 485 . . . . . . . . . . 11 ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅)
3837eqcomd 2737 . . . . . . . . . 10 ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ = 𝑌)
3938ad2antlr 725 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ = 𝑌)
4033, 36, 393eqtrd 2775 . . . . . . . 8 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌)
4140ex 413 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌))
4230, 41sylbid 239 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
4342a1d 25 . . . . 5 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
4443ex 413 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4525, 44sylani 604 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4624, 45sylbid 239 . 2 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
47463imp 1111 1 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3446  c0 4287  {csn 4591  cop 4597  cmpt 5193  cfv 6501  (class class class)co 7362  1oc1o 8410  m cmap 8772  Basecbs 17094  CRingccrg 19979  Unitcui 20082  /rcdvr 20125   Mat cmat 21791   maVecMul cmvmul 21926   matRepV cmatrepV 21943   maDet cmdat 21970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9387  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-fz 13435  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-hom 17171  df-cco 17172  df-0g 17337  df-prds 17343  df-pws 17345  df-sra 20692  df-rgmod 20693  df-dsmm 21175  df-frlm 21190  df-mat 21792  df-mvmul 21927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator