MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramer0 Structured version   Visualization version   GIF version

Theorem cramer0 22584
Description: Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramer0 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramer0
StepHypRef Expression
1 cramer.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
2 cramer.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
32fveq2i 6864 . . . . . . . . 9 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
41, 3eqtri 2753 . . . . . . . 8 𝐵 = (Base‘(𝑁 Mat 𝑅))
5 fvoveq1 7413 . . . . . . . 8 (𝑁 = ∅ → (Base‘(𝑁 Mat 𝑅)) = (Base‘(∅ Mat 𝑅)))
64, 5eqtrid 2777 . . . . . . 7 (𝑁 = ∅ → 𝐵 = (Base‘(∅ Mat 𝑅)))
76adantr 480 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝐵 = (Base‘(∅ Mat 𝑅)))
87eleq2d 2815 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ (Base‘(∅ Mat 𝑅))))
9 mat0dimbas0 22360 . . . . . . 7 (𝑅 ∈ CRing → (Base‘(∅ Mat 𝑅)) = {∅})
109eleq2d 2815 . . . . . 6 (𝑅 ∈ CRing → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
1110adantl 481 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋 ∈ (Base‘(∅ Mat 𝑅)) ↔ 𝑋 ∈ {∅}))
128, 11bitrd 279 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑋𝐵𝑋 ∈ {∅}))
13 cramer.v . . . . . . . 8 𝑉 = ((Base‘𝑅) ↑m 𝑁)
1413a1i 11 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = ((Base‘𝑅) ↑m 𝑁))
15 oveq2 7398 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
1615adantr 480 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m ∅))
17 fvex 6874 . . . . . . . 8 (Base‘𝑅) ∈ V
18 map0e 8858 . . . . . . . 8 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑m ∅) = 1o)
1917, 18mp1i 13 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m ∅) = 1o)
2014, 16, 193eqtrd 2769 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → 𝑉 = 1o)
2120eleq2d 2815 . . . . 5 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 ∈ 1o))
22 el1o 8462 . . . . 5 (𝑌 ∈ 1o𝑌 = ∅)
2321, 22bitrdi 287 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (𝑌𝑉𝑌 = ∅))
2412, 23anbi12d 632 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) ↔ (𝑋 ∈ {∅} ∧ 𝑌 = ∅)))
25 elsni 4609 . . . 4 (𝑋 ∈ {∅} → 𝑋 = ∅)
26 mpteq1 5199 . . . . . . . . . 10 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
27 mpt0 6663 . . . . . . . . . 10 (𝑖 ∈ ∅ ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅
2826, 27eqtrdi 2781 . . . . . . . . 9 (𝑁 = ∅ → (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) = ∅)
2928eqeq2d 2741 . . . . . . . 8 (𝑁 = ∅ → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
3029ad2antrr 726 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ 𝑍 = ∅))
31 simplrl 776 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑋 = ∅)
32 simpr 484 . . . . . . . . . 10 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → 𝑍 = ∅)
3331, 32oveq12d 7408 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = (∅ · ∅))
34 cramer.x . . . . . . . . . . 11 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3534mavmul0 22446 . . . . . . . . . 10 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → (∅ · ∅) = ∅)
3635ad2antrr 726 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (∅ · ∅) = ∅)
37 simpr 484 . . . . . . . . . . 11 ((𝑋 = ∅ ∧ 𝑌 = ∅) → 𝑌 = ∅)
3837eqcomd 2736 . . . . . . . . . 10 ((𝑋 = ∅ ∧ 𝑌 = ∅) → ∅ = 𝑌)
3938ad2antlr 727 . . . . . . . . 9 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → ∅ = 𝑌)
4033, 36, 393eqtrd 2769 . . . . . . . 8 ((((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) ∧ 𝑍 = ∅) → (𝑋 · 𝑍) = 𝑌)
4140ex 412 . . . . . . 7 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = ∅ → (𝑋 · 𝑍) = 𝑌))
4230, 41sylbid 240 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
4342a1d 25 . . . . 5 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 = ∅ ∧ 𝑌 = ∅)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
4443ex 412 . . . 4 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 = ∅ ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4525, 44sylani 604 . . 3 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋 ∈ {∅} ∧ 𝑌 = ∅) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
4624, 45sylbid 240 . 2 ((𝑁 = ∅ ∧ 𝑅 ∈ CRing) → ((𝑋𝐵𝑌𝑉) → ((𝐷𝑋) ∈ (Unit‘𝑅) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
47463imp 1110 1 (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  1oc1o 8430  m cmap 8802  Basecbs 17186  CRingccrg 20150  Unitcui 20271  /rcdvr 20316   Mat cmat 22301   maVecMul cmvmul 22434   matRepV cmatrepV 22451   maDet cmdat 22478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mat 22302  df-mvmul 22435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator