HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  csmdsymi Structured version   Visualization version   GIF version

Theorem csmdsymi 32270
Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
csmdsym.1 𝐴C
csmdsym.2 𝐵C
Assertion
Ref Expression
csmdsymi ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → 𝐵 𝑀 𝐴)
Distinct variable group:   𝐵,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem csmdsymi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 incom 4175 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
21sseq1i 3978 . . . . 5 ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐵𝐴) ⊆ 𝑥)
32biimpri 228 . . . 4 ((𝐵𝐴) ⊆ 𝑥 → (𝐴𝐵) ⊆ 𝑥)
4 csmdsym.2 . . . . . . . . . 10 𝐵C
5 chjcom 31442 . . . . . . . . . 10 ((𝑥C𝐵C ) → (𝑥 𝐵) = (𝐵 𝑥))
64, 5mpan2 691 . . . . . . . . 9 (𝑥C → (𝑥 𝐵) = (𝐵 𝑥))
76ineq1d 4185 . . . . . . . 8 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) = ((𝐵 𝑥) ∩ 𝐴))
8 incom 4175 . . . . . . . 8 ((𝐵 𝑥) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥))
97, 8eqtrdi 2781 . . . . . . 7 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥)))
109ad2antlr 727 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝑥 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥)))
114a1i 11 . . . . . . . . 9 (𝑥C𝐵C )
12 id 22 . . . . . . . . 9 (𝑥C𝑥C )
13 csmdsym.1 . . . . . . . . . 10 𝐴C
1413a1i 11 . . . . . . . . 9 (𝑥C𝐴C )
1511, 12, 143jca 1128 . . . . . . . 8 (𝑥C → (𝐵C𝑥C𝐴C ))
1615ad2antlr 727 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝐵C𝑥C𝐴C ))
17 inss2 4204 . . . . . . . . . . . . 13 (𝐴𝐵) ⊆ 𝐵
18 ssid 3972 . . . . . . . . . . . . 13 𝐵𝐵
1917, 18pm3.2i 470 . . . . . . . . . . . 12 ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)
20 sseq2 3976 . . . . . . . . . . . . . . . . 17 (𝑥 = if(𝑥C , 𝑥, 0) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0)))
21 sseq1 3975 . . . . . . . . . . . . . . . . 17 (𝑥 = if(𝑥C , 𝑥, 0) → (𝑥𝐴 ↔ if(𝑥C , 𝑥, 0) ⊆ 𝐴))
2220, 21anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑥 = if(𝑥C , 𝑥, 0) → (((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ↔ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴)))
23223anbi2d 1443 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥C , 𝑥, 0) → ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) ↔ (𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵))))
24 breq1 5113 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥C , 𝑥, 0) → (𝑥 𝑀 𝐵 ↔ if(𝑥C , 𝑥, 0) 𝑀 𝐵))
2523, 24imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = if(𝑥C , 𝑥, 0) → (((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → 𝑥 𝑀 𝐵) ↔ ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → if(𝑥C , 𝑥, 0) 𝑀 𝐵)))
26 h0elch 31191 . . . . . . . . . . . . . . . 16 0C
2726elimel 4561 . . . . . . . . . . . . . . 15 if(𝑥C , 𝑥, 0) ∈ C
2813, 4, 27, 4mdslmd4i 32269 . . . . . . . . . . . . . 14 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → if(𝑥C , 𝑥, 0) 𝑀 𝐵)
2925, 28dedth 4550 . . . . . . . . . . . . 13 (𝑥C → ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → 𝑥 𝑀 𝐵))
3029com12 32 . . . . . . . . . . . 12 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → (𝑥C𝑥 𝑀 𝐵))
3119, 30mp3an3 1452 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝑥C𝑥 𝑀 𝐵))
3231imp 406 . . . . . . . . . 10 (((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) ∧ 𝑥C ) → 𝑥 𝑀 𝐵)
3332an32s 652 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥 𝑀 𝐵)
3433adantlll 718 . . . . . . . 8 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥 𝑀 𝐵)
35 breq1 5113 . . . . . . . . . . . 12 (𝑐 = 𝑥 → (𝑐 𝑀 𝐵𝑥 𝑀 𝐵))
36 breq2 5114 . . . . . . . . . . . 12 (𝑐 = 𝑥 → (𝐵 𝑀* 𝑐𝐵 𝑀* 𝑥))
3735, 36imbi12d 344 . . . . . . . . . . 11 (𝑐 = 𝑥 → ((𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ↔ (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥)))
3837rspccva 3590 . . . . . . . . . 10 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝑥C ) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
3938adantlr 715 . . . . . . . . 9 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
4039adantr 480 . . . . . . . 8 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
4134, 40mpd 15 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝐵 𝑀* 𝑥)
42 simprr 772 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥𝐴)
43 dmdi 32238 . . . . . . 7 (((𝐵C𝑥C𝐴C ) ∧ (𝐵 𝑀* 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝐴 ∩ (𝐵 𝑥)))
4416, 41, 42, 43syl12anc 836 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝐴 ∩ (𝐵 𝑥)))
4513, 4chincli 31396 . . . . . . . . 9 (𝐴𝐵) ∈ C
46 chjcom 31442 . . . . . . . . 9 (((𝐴𝐵) ∈ C𝑥C ) → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐴𝐵)))
4745, 46mpan 690 . . . . . . . 8 (𝑥C → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐴𝐵)))
481oveq2i 7401 . . . . . . . 8 (𝑥 (𝐴𝐵)) = (𝑥 (𝐵𝐴))
4947, 48eqtrdi 2781 . . . . . . 7 (𝑥C → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐵𝐴)))
5049ad2antlr 727 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐵𝐴)))
5110, 44, 503eqtr2d 2771 . . . . 5 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴)))
5251ex 412 . . . 4 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (((𝐴𝐵) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
533, 52sylani 604 . . 3 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
5453ralrimiva 3126 . 2 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → ∀𝑥C (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
554, 13mdsl2bi 32259 . 2 (𝐵 𝑀 𝐴 ↔ ∀𝑥C (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
5654, 55sylibr 234 1 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → 𝐵 𝑀 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917  ifcif 4491   class class class wbr 5110  (class class class)co 7390   C cch 30865   chj 30869  0c0h 30871   𝑀 cmd 30902   𝑀* cdmd 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-chj 31246  df-md 32216  df-dmd 32217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator