HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  csmdsymi Structured version   Visualization version   GIF version

Theorem csmdsymi 32216
Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
csmdsym.1 𝐴C
csmdsym.2 𝐵C
Assertion
Ref Expression
csmdsymi ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → 𝐵 𝑀 𝐴)
Distinct variable group:   𝐵,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem csmdsymi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 incom 4199 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
21sseq1i 4005 . . . . 5 ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐵𝐴) ⊆ 𝑥)
32biimpri 227 . . . 4 ((𝐵𝐴) ⊆ 𝑥 → (𝐴𝐵) ⊆ 𝑥)
4 csmdsym.2 . . . . . . . . . 10 𝐵C
5 chjcom 31388 . . . . . . . . . 10 ((𝑥C𝐵C ) → (𝑥 𝐵) = (𝐵 𝑥))
64, 5mpan2 689 . . . . . . . . 9 (𝑥C → (𝑥 𝐵) = (𝐵 𝑥))
76ineq1d 4209 . . . . . . . 8 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) = ((𝐵 𝑥) ∩ 𝐴))
8 incom 4199 . . . . . . . 8 ((𝐵 𝑥) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥))
97, 8eqtrdi 2781 . . . . . . 7 (𝑥C → ((𝑥 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥)))
109ad2antlr 725 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝑥 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐵 𝑥)))
114a1i 11 . . . . . . . . 9 (𝑥C𝐵C )
12 id 22 . . . . . . . . 9 (𝑥C𝑥C )
13 csmdsym.1 . . . . . . . . . 10 𝐴C
1413a1i 11 . . . . . . . . 9 (𝑥C𝐴C )
1511, 12, 143jca 1125 . . . . . . . 8 (𝑥C → (𝐵C𝑥C𝐴C ))
1615ad2antlr 725 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝐵C𝑥C𝐴C ))
17 inss2 4228 . . . . . . . . . . . . 13 (𝐴𝐵) ⊆ 𝐵
18 ssid 3999 . . . . . . . . . . . . 13 𝐵𝐵
1917, 18pm3.2i 469 . . . . . . . . . . . 12 ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)
20 sseq2 4003 . . . . . . . . . . . . . . . . 17 (𝑥 = if(𝑥C , 𝑥, 0) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0)))
21 sseq1 4002 . . . . . . . . . . . . . . . . 17 (𝑥 = if(𝑥C , 𝑥, 0) → (𝑥𝐴 ↔ if(𝑥C , 𝑥, 0) ⊆ 𝐴))
2220, 21anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑥 = if(𝑥C , 𝑥, 0) → (((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ↔ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴)))
23223anbi2d 1437 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥C , 𝑥, 0) → ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) ↔ (𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵))))
24 breq1 5152 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥C , 𝑥, 0) → (𝑥 𝑀 𝐵 ↔ if(𝑥C , 𝑥, 0) 𝑀 𝐵))
2523, 24imbi12d 343 . . . . . . . . . . . . . 14 (𝑥 = if(𝑥C , 𝑥, 0) → (((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → 𝑥 𝑀 𝐵) ↔ ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → if(𝑥C , 𝑥, 0) 𝑀 𝐵)))
26 h0elch 31137 . . . . . . . . . . . . . . . 16 0C
2726elimel 4599 . . . . . . . . . . . . . . 15 if(𝑥C , 𝑥, 0) ∈ C
2813, 4, 27, 4mdslmd4i 32215 . . . . . . . . . . . . . 14 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ if(𝑥C , 𝑥, 0) ∧ if(𝑥C , 𝑥, 0) ⊆ 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → if(𝑥C , 𝑥, 0) 𝑀 𝐵)
2925, 28dedth 4588 . . . . . . . . . . . . 13 (𝑥C → ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → 𝑥 𝑀 𝐵))
3029com12 32 . . . . . . . . . . . 12 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴) ∧ ((𝐴𝐵) ⊆ 𝐵𝐵𝐵)) → (𝑥C𝑥 𝑀 𝐵))
3119, 30mp3an3 1446 . . . . . . . . . . 11 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝑥C𝑥 𝑀 𝐵))
3231imp 405 . . . . . . . . . 10 (((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) ∧ 𝑥C ) → 𝑥 𝑀 𝐵)
3332an32s 650 . . . . . . . . 9 (((𝐴 𝑀 𝐵𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥 𝑀 𝐵)
3433adantlll 716 . . . . . . . 8 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥 𝑀 𝐵)
35 breq1 5152 . . . . . . . . . . . 12 (𝑐 = 𝑥 → (𝑐 𝑀 𝐵𝑥 𝑀 𝐵))
36 breq2 5153 . . . . . . . . . . . 12 (𝑐 = 𝑥 → (𝐵 𝑀* 𝑐𝐵 𝑀* 𝑥))
3735, 36imbi12d 343 . . . . . . . . . . 11 (𝑐 = 𝑥 → ((𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ↔ (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥)))
3837rspccva 3605 . . . . . . . . . 10 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝑥C ) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
3938adantlr 713 . . . . . . . . 9 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
4039adantr 479 . . . . . . . 8 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → (𝑥 𝑀 𝐵𝐵 𝑀* 𝑥))
4134, 40mpd 15 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝐵 𝑀* 𝑥)
42 simprr 771 . . . . . . 7 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → 𝑥𝐴)
43 dmdi 32184 . . . . . . 7 (((𝐵C𝑥C𝐴C ) ∧ (𝐵 𝑀* 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝐴 ∩ (𝐵 𝑥)))
4416, 41, 42, 43syl12anc 835 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝐴 ∩ (𝐵 𝑥)))
4513, 4chincli 31342 . . . . . . . . 9 (𝐴𝐵) ∈ C
46 chjcom 31388 . . . . . . . . 9 (((𝐴𝐵) ∈ C𝑥C ) → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐴𝐵)))
4745, 46mpan 688 . . . . . . . 8 (𝑥C → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐴𝐵)))
481oveq2i 7430 . . . . . . . 8 (𝑥 (𝐴𝐵)) = (𝑥 (𝐵𝐴))
4947, 48eqtrdi 2781 . . . . . . 7 (𝑥C → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐵𝐴)))
5049ad2antlr 725 . . . . . 6 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝐴𝐵) ∨ 𝑥) = (𝑥 (𝐵𝐴)))
5110, 44, 503eqtr2d 2771 . . . . 5 ((((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) ∧ ((𝐴𝐵) ⊆ 𝑥𝑥𝐴)) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴)))
5251ex 411 . . . 4 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (((𝐴𝐵) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
533, 52sylani 602 . . 3 (((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) ∧ 𝑥C ) → (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
5453ralrimiva 3135 . 2 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → ∀𝑥C (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
554, 13mdsl2bi 32205 . 2 (𝐵 𝑀 𝐴 ↔ ∀𝑥C (((𝐵𝐴) ⊆ 𝑥𝑥𝐴) → ((𝑥 𝐵) ∩ 𝐴) = (𝑥 (𝐵𝐴))))
5654, 55sylibr 233 1 ((∀𝑐C (𝑐 𝑀 𝐵𝐵 𝑀* 𝑐) ∧ 𝐴 𝑀 𝐵) → 𝐵 𝑀 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  cin 3943  wss 3944  ifcif 4530   class class class wbr 5149  (class class class)co 7419   C cch 30811   chj 30815  0c0h 30817   𝑀 cmd 30848   𝑀* cdmd 30849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967  ax-hcompl 31084
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-cn 23175  df-cnp 23176  df-lm 23177  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cfil 25227  df-cau 25228  df-cmet 25229  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-dip 30583  df-ssp 30604  df-ph 30695  df-cbn 30745  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-hlim 30854  df-hcau 30855  df-sh 31089  df-ch 31103  df-oc 31134  df-ch0 31135  df-shs 31190  df-chj 31192  df-md 32162  df-dmd 32163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator