![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
Ref | Expression |
---|---|
sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
3 | 2 | ancomsd 467 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
4 | 1, 3 | syland 604 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
5 | 4 | ancomsd 467 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sylan2i 607 syl2and 609 swopo 5600 fprlem1 8285 wfrlem5OLD 8313 unblem1 9295 unfiOLD 9313 frrlem15 9752 prodgt02 12062 lo1mul 15572 infpnlem1 16843 ghmcnp 23619 ulmcaulem 25906 ulmcau 25907 shintcli 30582 ballotlemfc0 33491 ballotlemfcc 33492 btwnxfr 35028 endofsegid 35057 bj-bary1lem1 36192 matunitlindflem1 36484 ltcvrntr 38295 poml4N 38824 |
Copyright terms: Public domain | W3C validator |