| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
| 3 | 2 | ancomsd 465 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 4 | 1, 3 | syland 603 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| 5 | 4 | ancomsd 465 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2i 606 syl2and 608 swopo 5538 fprlem1 8236 unblem1 9183 frrlem15 9657 prodgt02 11976 lo1mul 15537 infpnlem1 16824 ghmcnp 24031 ulmcaulem 26331 ulmcau 26332 shintcli 31311 ballotlemfc0 34527 ballotlemfcc 34528 btwnxfr 36121 endofsegid 36150 bj-bary1lem1 37376 matunitlindflem1 37677 ltcvrntr 39544 poml4N 40073 |
| Copyright terms: Public domain | W3C validator |