MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2d Structured version   Visualization version   GIF version

Theorem sylan2d 604
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
sylan2d.1 (𝜑 → (𝜓𝜒))
sylan2d.2 (𝜑 → ((𝜃𝜒) → 𝜏))
Assertion
Ref Expression
sylan2d (𝜑 → ((𝜃𝜓) → 𝜏))

Proof of Theorem sylan2d
StepHypRef Expression
1 sylan2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan2d.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜏))
32ancomsd 465 . . 3 (𝜑 → ((𝜒𝜃) → 𝜏))
41, 3syland 602 . 2 (𝜑 → ((𝜓𝜃) → 𝜏))
54ancomsd 465 1 (𝜑 → ((𝜃𝜓) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylan2i  605  syl2and  607  swopo  5619  fprlem1  8341  wfrlem5OLD  8369  unblem1  9356  frrlem15  9826  prodgt02  12142  lo1mul  15674  infpnlem1  16957  ghmcnp  24144  ulmcaulem  26455  ulmcau  26456  shintcli  31361  ballotlemfc0  34457  ballotlemfcc  34458  btwnxfr  36020  endofsegid  36049  bj-bary1lem1  37277  matunitlindflem1  37576  ltcvrntr  39381  poml4N  39910
  Copyright terms: Public domain W3C validator