Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
Ref | Expression |
---|---|
sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
3 | 2 | ancomsd 466 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
4 | 1, 3 | syland 603 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
5 | 4 | ancomsd 466 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylan2i 606 syl2and 608 swopo 5514 fprlem1 8116 wfrlem5OLD 8144 unblem1 9066 unfiOLD 9081 frrlem15 9515 prodgt02 11823 lo1mul 15337 infpnlem1 16611 ghmcnp 23266 ulmcaulem 25553 ulmcau 25554 shintcli 29691 ballotlemfc0 32459 ballotlemfcc 32460 btwnxfr 34358 endofsegid 34387 bj-bary1lem1 35482 matunitlindflem1 35773 ltcvrntr 37438 poml4N 37967 |
Copyright terms: Public domain | W3C validator |