Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
Ref | Expression |
---|---|
sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
3 | 2 | ancomsd 465 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
4 | 1, 3 | syland 602 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
5 | 4 | ancomsd 465 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylan2i 605 syl2and 607 swopo 5505 fprlem1 8087 wfrlem5OLD 8115 unblem1 8996 unfiOLD 9011 frrlem15 9446 prodgt02 11753 lo1mul 15265 infpnlem1 16539 ghmcnp 23174 ulmcaulem 25458 ulmcau 25459 shintcli 29592 ballotlemfc0 32359 ballotlemfcc 32360 btwnxfr 34285 endofsegid 34314 bj-bary1lem1 35409 matunitlindflem1 35700 ltcvrntr 37365 poml4N 37894 |
Copyright terms: Public domain | W3C validator |