MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2d Structured version   Visualization version   GIF version

Theorem sylan2d 605
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
sylan2d.1 (𝜑 → (𝜓𝜒))
sylan2d.2 (𝜑 → ((𝜃𝜒) → 𝜏))
Assertion
Ref Expression
sylan2d (𝜑 → ((𝜃𝜓) → 𝜏))

Proof of Theorem sylan2d
StepHypRef Expression
1 sylan2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan2d.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜏))
32ancomsd 465 . . 3 (𝜑 → ((𝜒𝜃) → 𝜏))
41, 3syland 603 . 2 (𝜑 → ((𝜓𝜃) → 𝜏))
54ancomsd 465 1 (𝜑 → ((𝜃𝜓) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylan2i  606  syl2and  608  swopo  5577  fprlem1  8304  wfrlem5OLD  8332  unblem1  9305  frrlem15  9776  prodgt02  12094  lo1mul  15649  infpnlem1  16935  ghmcnp  24058  ulmcaulem  26360  ulmcau  26361  shintcli  31315  ballotlemfc0  34530  ballotlemfcc  34531  btwnxfr  36079  endofsegid  36108  bj-bary1lem1  37334  matunitlindflem1  37645  ltcvrntr  39448  poml4N  39977
  Copyright terms: Public domain W3C validator