![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
Ref | Expression |
---|---|
sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
3 | 2 | ancomsd 465 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
4 | 1, 3 | syland 602 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
5 | 4 | ancomsd 465 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylan2i 605 syl2and 607 swopo 5619 fprlem1 8341 wfrlem5OLD 8369 unblem1 9356 frrlem15 9826 prodgt02 12142 lo1mul 15674 infpnlem1 16957 ghmcnp 24144 ulmcaulem 26455 ulmcau 26456 shintcli 31361 ballotlemfc0 34457 ballotlemfcc 34458 btwnxfr 36020 endofsegid 36049 bj-bary1lem1 37277 matunitlindflem1 37576 ltcvrntr 39381 poml4N 39910 |
Copyright terms: Public domain | W3C validator |