MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2d Structured version   Visualization version   GIF version

Theorem sylan2d 606
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
sylan2d.1 (𝜑 → (𝜓𝜒))
sylan2d.2 (𝜑 → ((𝜃𝜒) → 𝜏))
Assertion
Ref Expression
sylan2d (𝜑 → ((𝜃𝜓) → 𝜏))

Proof of Theorem sylan2d
StepHypRef Expression
1 sylan2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan2d.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜏))
32ancomsd 467 . . 3 (𝜑 → ((𝜒𝜃) → 𝜏))
41, 3syland 604 . 2 (𝜑 → ((𝜓𝜃) → 𝜏))
54ancomsd 467 1 (𝜑 → ((𝜃𝜓) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  sylan2i  607  syl2and  609  swopo  5600  fprlem1  8285  wfrlem5OLD  8313  unblem1  9295  unfiOLD  9313  frrlem15  9752  prodgt02  12062  lo1mul  15572  infpnlem1  16843  ghmcnp  23619  ulmcaulem  25906  ulmcau  25907  shintcli  30582  ballotlemfc0  33491  ballotlemfcc  33492  btwnxfr  35028  endofsegid  35057  bj-bary1lem1  36192  matunitlindflem1  36484  ltcvrntr  38295  poml4N  38824
  Copyright terms: Public domain W3C validator