| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
| 3 | 2 | ancomsd 465 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 4 | 1, 3 | syland 603 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| 5 | 4 | ancomsd 465 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2i 606 syl2and 608 swopo 5577 fprlem1 8304 wfrlem5OLD 8332 unblem1 9305 frrlem15 9776 prodgt02 12094 lo1mul 15649 infpnlem1 16935 ghmcnp 24058 ulmcaulem 26360 ulmcau 26361 shintcli 31315 ballotlemfc0 34530 ballotlemfcc 34531 btwnxfr 36079 endofsegid 36108 bj-bary1lem1 37334 matunitlindflem1 37645 ltcvrntr 39448 poml4N 39977 |
| Copyright terms: Public domain | W3C validator |