MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2d Structured version   Visualization version   GIF version

Theorem sylan2d 605
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
sylan2d.1 (𝜑 → (𝜓𝜒))
sylan2d.2 (𝜑 → ((𝜃𝜒) → 𝜏))
Assertion
Ref Expression
sylan2d (𝜑 → ((𝜃𝜓) → 𝜏))

Proof of Theorem sylan2d
StepHypRef Expression
1 sylan2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan2d.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜏))
32ancomsd 465 . . 3 (𝜑 → ((𝜒𝜃) → 𝜏))
41, 3syland 603 . 2 (𝜑 → ((𝜓𝜃) → 𝜏))
54ancomsd 465 1 (𝜑 → ((𝜃𝜓) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylan2i  606  syl2and  608  swopo  5560  fprlem1  8282  unblem1  9246  frrlem15  9717  prodgt02  12037  lo1mul  15601  infpnlem1  16888  ghmcnp  24009  ulmcaulem  26310  ulmcau  26311  shintcli  31265  ballotlemfc0  34491  ballotlemfcc  34492  btwnxfr  36051  endofsegid  36080  bj-bary1lem1  37306  matunitlindflem1  37617  ltcvrntr  39425  poml4N  39954
  Copyright terms: Public domain W3C validator