| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan2d | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| sylan2d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan2d.2 | ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan2d.2 | . . . 4 ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) | |
| 3 | 2 | ancomsd 465 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 4 | 1, 3 | syland 603 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| 5 | 4 | ancomsd 465 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2i 606 syl2and 608 swopo 5560 fprlem1 8282 unblem1 9246 frrlem15 9717 prodgt02 12037 lo1mul 15601 infpnlem1 16888 ghmcnp 24009 ulmcaulem 26310 ulmcau 26311 shintcli 31265 ballotlemfc0 34491 ballotlemfcc 34492 btwnxfr 36051 endofsegid 36080 bj-bary1lem1 37306 matunitlindflem1 37617 ltcvrntr 39425 poml4N 39954 |
| Copyright terms: Public domain | W3C validator |