MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan2d Structured version   Visualization version   GIF version

Theorem sylan2d 604
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
sylan2d.1 (𝜑 → (𝜓𝜒))
sylan2d.2 (𝜑 → ((𝜃𝜒) → 𝜏))
Assertion
Ref Expression
sylan2d (𝜑 → ((𝜃𝜓) → 𝜏))

Proof of Theorem sylan2d
StepHypRef Expression
1 sylan2d.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan2d.2 . . . 4 (𝜑 → ((𝜃𝜒) → 𝜏))
32ancomsd 465 . . 3 (𝜑 → ((𝜒𝜃) → 𝜏))
41, 3syland 602 . 2 (𝜑 → ((𝜓𝜃) → 𝜏))
54ancomsd 465 1 (𝜑 → ((𝜃𝜓) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  sylan2i  605  syl2and  607  swopo  5505  fprlem1  8087  wfrlem5OLD  8115  unblem1  8996  unfiOLD  9011  frrlem15  9446  prodgt02  11753  lo1mul  15265  infpnlem1  16539  ghmcnp  23174  ulmcaulem  25458  ulmcau  25459  shintcli  29592  ballotlemfc0  32359  ballotlemfcc  32360  btwnxfr  34285  endofsegid  34314  bj-bary1lem1  35409  matunitlindflem1  35700  ltcvrntr  37365  poml4N  37894
  Copyright terms: Public domain W3C validator