| Step | Hyp | Ref
| Expression |
| 1 | | zorn2lem.3 |
. . . . . 6
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
| 2 | 1 | tfr1 8411 |
. . . . 5
⊢ 𝐹 Fn On |
| 3 | | fnfun 6638 |
. . . . 5
⊢ (𝐹 Fn On → Fun 𝐹) |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ Fun 𝐹 |
| 5 | | fvelima 6944 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠) |
| 6 | 4, 5 | mpan 690 |
. . 3
⊢ (𝑠 ∈ (𝐹 “ 𝑥) → ∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠) |
| 7 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦(𝑤 We 𝐴 ∧ 𝑥 ∈ On) |
| 8 | | nfra1 3266 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ |
| 9 | 7, 8 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑦((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) |
| 10 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑦 𝑠 ∈ 𝐴 |
| 11 | | df-ral 3052 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝐻 ≠ ∅)) |
| 12 | | onelon 6377 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
| 13 | | zorn2lem.7 |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} |
| 14 | 13 | ssrab3 4057 |
. . . . . . . . . . . . . . 15
⊢ 𝐻 ⊆ 𝐴 |
| 15 | | zorn2lem.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
| 16 | 1, 15, 13 | zorn2lem1 10510 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → (𝐹‘𝑦) ∈ 𝐻) |
| 17 | 14, 16 | sselid 3956 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → (𝐹‘𝑦) ∈ 𝐴) |
| 18 | | eleq1 2822 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) = 𝑠 → ((𝐹‘𝑦) ∈ 𝐴 ↔ 𝑠 ∈ 𝐴)) |
| 19 | 17, 18 | imbitrid 244 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → 𝑠 ∈ 𝐴)) |
| 20 | 12, 19 | sylani 604 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → 𝑠 ∈ 𝐴)) |
| 21 | 20 | com12 32 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)) |
| 22 | 21 | exp43 436 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))))) |
| 23 | 22 | com3r 87 |
. . . . . . . . 9
⊢ (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))))) |
| 24 | 23 | imp 406 |
. . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
| 25 | 24 | a2d 29 |
. . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → ((𝑦 ∈ 𝑥 → 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
| 26 | 25 | spsd 2187 |
. . . . . 6
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦(𝑦 ∈ 𝑥 → 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
| 27 | 11, 26 | biimtrid 242 |
. . . . 5
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
| 28 | 27 | imp 406 |
. . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))) |
| 29 | 9, 10, 28 | rexlimd 3249 |
. . 3
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)) |
| 30 | 6, 29 | syl5 34 |
. 2
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹 “ 𝑥) → 𝑠 ∈ 𝐴)) |
| 31 | 30 | ssrdv 3964 |
1
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) |