MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem5 Structured version   Visualization version   GIF version

Theorem zorn2lem5 10240
Description: Lemma for zorn2 10246. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr1 8212 . . . . 5 𝐹 Fn On
3 fnfun 6529 . . . . 5 (𝐹 Fn On → Fun 𝐹)
42, 3ax-mp 5 . . . 4 Fun 𝐹
5 fvelima 6829 . . . 4 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
64, 5mpan 686 . . 3 (𝑠 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
7 nfv 1920 . . . . 5 𝑦(𝑤 We 𝐴𝑥 ∈ On)
8 nfra1 3144 . . . . 5 𝑦𝑦𝑥 𝐻 ≠ ∅
97, 8nfan 1905 . . . 4 𝑦((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)
10 nfv 1920 . . . 4 𝑦 𝑠𝐴
11 df-ral 3070 . . . . . 6 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦𝑥𝐻 ≠ ∅))
12 onelon 6288 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
13 zorn2lem.7 . . . . . . . . . . . . . . . 16 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
1413ssrab3 4019 . . . . . . . . . . . . . . 15 𝐻𝐴
15 zorn2lem.4 . . . . . . . . . . . . . . . 16 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
161, 15, 13zorn2lem1 10236 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐻)
1714, 16sselid 3923 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐴)
18 eleq1 2827 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑠 → ((𝐹𝑦) ∈ 𝐴𝑠𝐴))
1917, 18syl5ib 243 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2012, 19sylani 603 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2120com12 32 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → ((𝐹𝑦) = 𝑠𝑠𝐴))
2221exp43 436 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2322com3r 87 . . . . . . . . 9 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2423imp 406 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2524a2d 29 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2625spsd 2183 . . . . . 6 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦(𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2711, 26syl5bi 241 . . . . 5 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2827imp 406 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴)))
299, 10, 28rexlimd 3247 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑠𝑠𝐴))
306, 29syl5 34 . 2 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹𝑥) → 𝑠𝐴))
3130ssrdv 3931 1 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  wss 3891  c0 4261   class class class wbr 5078  cmpt 5161   We wwe 5542  ran crn 5589  cima 5591  Oncon0 6263  Fun wfun 6424   Fn wfn 6425  cfv 6430  crio 7224  recscrecs 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186
This theorem is referenced by:  zorn2lem6  10241  zorn2lem7  10242
  Copyright terms: Public domain W3C validator