MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem5 Structured version   Visualization version   GIF version

Theorem zorn2lem5 10391
Description: Lemma for zorn2 10397. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr1 8316 . . . . 5 𝐹 Fn On
3 fnfun 6581 . . . . 5 (𝐹 Fn On → Fun 𝐹)
42, 3ax-mp 5 . . . 4 Fun 𝐹
5 fvelima 6887 . . . 4 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
64, 5mpan 690 . . 3 (𝑠 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
7 nfv 1915 . . . . 5 𝑦(𝑤 We 𝐴𝑥 ∈ On)
8 nfra1 3256 . . . . 5 𝑦𝑦𝑥 𝐻 ≠ ∅
97, 8nfan 1900 . . . 4 𝑦((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)
10 nfv 1915 . . . 4 𝑦 𝑠𝐴
11 df-ral 3048 . . . . . 6 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦𝑥𝐻 ≠ ∅))
12 onelon 6331 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
13 zorn2lem.7 . . . . . . . . . . . . . . . 16 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
1413ssrab3 4029 . . . . . . . . . . . . . . 15 𝐻𝐴
15 zorn2lem.4 . . . . . . . . . . . . . . . 16 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
161, 15, 13zorn2lem1 10387 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐻)
1714, 16sselid 3927 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐴)
18 eleq1 2819 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑠 → ((𝐹𝑦) ∈ 𝐴𝑠𝐴))
1917, 18imbitrid 244 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2012, 19sylani 604 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2120com12 32 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → ((𝐹𝑦) = 𝑠𝑠𝐴))
2221exp43 436 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2322com3r 87 . . . . . . . . 9 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2423imp 406 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2524a2d 29 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2625spsd 2190 . . . . . 6 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦(𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2711, 26biimtrid 242 . . . . 5 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2827imp 406 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴)))
299, 10, 28rexlimd 3239 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑠𝑠𝐴))
306, 29syl5 34 . 2 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹𝑥) → 𝑠𝐴))
3130ssrdv 3935 1 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170   We wwe 5566  ran crn 5615  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  crio 7302  recscrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291
This theorem is referenced by:  zorn2lem6  10392  zorn2lem7  10393
  Copyright terms: Public domain W3C validator