MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem5 Structured version   Visualization version   GIF version

Theorem zorn2lem5 10530
Description: Lemma for zorn2 10536. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem5
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr1 8418 . . . . 5 𝐹 Fn On
3 fnfun 6655 . . . . 5 (𝐹 Fn On → Fun 𝐹)
42, 3ax-mp 5 . . . 4 Fun 𝐹
5 fvelima 6963 . . . 4 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
64, 5mpan 688 . . 3 (𝑠 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑠)
7 nfv 1909 . . . . 5 𝑦(𝑤 We 𝐴𝑥 ∈ On)
8 nfra1 3271 . . . . 5 𝑦𝑦𝑥 𝐻 ≠ ∅
97, 8nfan 1894 . . . 4 𝑦((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)
10 nfv 1909 . . . 4 𝑦 𝑠𝐴
11 df-ral 3051 . . . . . 6 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦𝑥𝐻 ≠ ∅))
12 onelon 6396 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
13 zorn2lem.7 . . . . . . . . . . . . . . . 16 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
1413ssrab3 4076 . . . . . . . . . . . . . . 15 𝐻𝐴
15 zorn2lem.4 . . . . . . . . . . . . . . . 16 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
161, 15, 13zorn2lem1 10526 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐻)
1714, 16sselid 3974 . . . . . . . . . . . . . 14 ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → (𝐹𝑦) ∈ 𝐴)
18 eleq1 2813 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑠 → ((𝐹𝑦) ∈ 𝐴𝑠𝐴))
1917, 18imbitrid 243 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2012, 19sylani 602 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → 𝑠𝐴))
2120com12 32 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦𝑥) ∧ (𝑤 We 𝐴𝐻 ≠ ∅)) → ((𝐹𝑦) = 𝑠𝑠𝐴))
2221exp43 435 . . . . . . . . . 10 (𝑥 ∈ On → (𝑦𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2322com3r 87 . . . . . . . . 9 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴)))))
2423imp 405 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (𝑦𝑥 → (𝐻 ≠ ∅ → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2524a2d 29 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2625spsd 2175 . . . . . 6 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦(𝑦𝑥𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2711, 26biimtrid 241 . . . . 5 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴))))
2827imp 405 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑠𝑠𝐴)))
299, 10, 28rexlimd 3253 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑠𝑠𝐴))
306, 29syl5 34 . 2 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹𝑥) → 𝑠𝐴))
3130ssrdv 3982 1 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wal 1531   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  wss 3944  c0 4322   class class class wbr 5149  cmpt 5232   We wwe 5632  ran crn 5679  cima 5681  Oncon0 6371  Fun wfun 6543   Fn wfn 6544  cfv 6549  crio 7374  recscrecs 8391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392
This theorem is referenced by:  zorn2lem6  10531  zorn2lem7  10532
  Copyright terms: Public domain W3C validator