Step | Hyp | Ref
| Expression |
1 | | zorn2lem.3 |
. . . . . 6
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
2 | 1 | tfr1 8212 |
. . . . 5
⊢ 𝐹 Fn On |
3 | | fnfun 6529 |
. . . . 5
⊢ (𝐹 Fn On → Fun 𝐹) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ Fun 𝐹 |
5 | | fvelima 6829 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠) |
6 | 4, 5 | mpan 686 |
. . 3
⊢ (𝑠 ∈ (𝐹 “ 𝑥) → ∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠) |
7 | | nfv 1920 |
. . . . 5
⊢
Ⅎ𝑦(𝑤 We 𝐴 ∧ 𝑥 ∈ On) |
8 | | nfra1 3144 |
. . . . 5
⊢
Ⅎ𝑦∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ |
9 | 7, 8 | nfan 1905 |
. . . 4
⊢
Ⅎ𝑦((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) |
10 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑦 𝑠 ∈ 𝐴 |
11 | | df-ral 3070 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝐻 ≠ ∅)) |
12 | | onelon 6288 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
13 | | zorn2lem.7 |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} |
14 | 13 | ssrab3 4019 |
. . . . . . . . . . . . . . 15
⊢ 𝐻 ⊆ 𝐴 |
15 | | zorn2lem.4 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
16 | 1, 15, 13 | zorn2lem1 10236 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → (𝐹‘𝑦) ∈ 𝐻) |
17 | 14, 16 | sselid 3923 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → (𝐹‘𝑦) ∈ 𝐴) |
18 | | eleq1 2827 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) = 𝑠 → ((𝐹‘𝑦) ∈ 𝐴 ↔ 𝑠 ∈ 𝐴)) |
19 | 17, 18 | syl5ib 243 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) = 𝑠 → ((𝑦 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → 𝑠 ∈ 𝐴)) |
20 | 12, 19 | sylani 603 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) = 𝑠 → (((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → 𝑠 ∈ 𝐴)) |
21 | 20 | com12 32 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) ∧ (𝑤 We 𝐴 ∧ 𝐻 ≠ ∅)) → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)) |
22 | 21 | exp43 436 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝑤 We 𝐴 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))))) |
23 | 22 | com3r 87 |
. . . . . . . . 9
⊢ (𝑤 We 𝐴 → (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))))) |
24 | 23 | imp 406 |
. . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 → (𝐻 ≠ ∅ → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
25 | 24 | a2d 29 |
. . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → ((𝑦 ∈ 𝑥 → 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
26 | 25 | spsd 2183 |
. . . . . 6
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦(𝑦 ∈ 𝑥 → 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
27 | 11, 26 | syl5bi 241 |
. . . . 5
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)))) |
28 | 27 | imp 406 |
. . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑦 ∈ 𝑥 → ((𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴))) |
29 | 9, 10, 28 | rexlimd 3247 |
. . 3
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (∃𝑦 ∈ 𝑥 (𝐹‘𝑦) = 𝑠 → 𝑠 ∈ 𝐴)) |
30 | 6, 29 | syl5 34 |
. 2
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑠 ∈ (𝐹 “ 𝑥) → 𝑠 ∈ 𝐴)) |
31 | 30 | ssrdv 3931 |
1
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) |