MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo Structured version   Visualization version   GIF version

Theorem uzwo 12877
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
Distinct variable group:   𝑗,𝑘,𝑆
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem uzwo
Dummy variables 𝑡 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . . . . . . . . 12 ( = 𝑀 → (𝑡𝑀𝑡))
21ralbidv 3157 . . . . . . . . . . 11 ( = 𝑀 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑀𝑡))
32imbi2d 340 . . . . . . . . . 10 ( = 𝑀 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)))
4 breq1 5113 . . . . . . . . . . . 12 ( = 𝑚 → (𝑡𝑚𝑡))
54ralbidv 3157 . . . . . . . . . . 11 ( = 𝑚 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
65imbi2d 340 . . . . . . . . . 10 ( = 𝑚 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡)))
7 breq1 5113 . . . . . . . . . . . 12 ( = (𝑚 + 1) → (𝑡 ↔ (𝑚 + 1) ≤ 𝑡))
87ralbidv 3157 . . . . . . . . . . 11 ( = (𝑚 + 1) → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
98imbi2d 340 . . . . . . . . . 10 ( = (𝑚 + 1) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
10 breq1 5113 . . . . . . . . . . . 12 ( = 𝑛 → (𝑡𝑛𝑡))
1110ralbidv 3157 . . . . . . . . . . 11 ( = 𝑛 → (∀𝑡𝑆 𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
1211imbi2d 340 . . . . . . . . . 10 ( = 𝑛 → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑡) ↔ ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡)))
13 ssel 3943 . . . . . . . . . . . . 13 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑡 ∈ (ℤ𝑀)))
14 eluzle 12813 . . . . . . . . . . . . 13 (𝑡 ∈ (ℤ𝑀) → 𝑀𝑡)
1513, 14syl6 35 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → (𝑡𝑆𝑀𝑡))
1615ralrimiv 3125 . . . . . . . . . . 11 (𝑆 ⊆ (ℤ𝑀) → ∀𝑡𝑆 𝑀𝑡)
1716adantr 480 . . . . . . . . . 10 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑀𝑡)
18 uzssz 12821 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
19 sstr 3958 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℤ) → 𝑆 ⊆ ℤ)
2018, 19mpan2 691 . . . . . . . . . . . 12 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℤ)
21 eluzelz 12810 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
22 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → (𝑗𝑡𝑚𝑡))
2322ralbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑚𝑡))
2423rspcev 3591 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑆 ∧ ∀𝑡𝑆 𝑚𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
2524expcom 413 . . . . . . . . . . . . . . . . 17 (∀𝑡𝑆 𝑚𝑡 → (𝑚𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
2625con3rr3 155 . . . . . . . . . . . . . . . 16 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑚𝑡 → ¬ 𝑚𝑆))
27 ssel2 3944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ⊆ ℤ ∧ 𝑡𝑆) → 𝑡 ∈ ℤ)
28 zre 12540 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
29 zre 12540 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℤ → 𝑡 ∈ ℝ)
30 letri3 11266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
3128, 29, 30syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡𝑡𝑚)))
32 zleltp1 12591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚𝑡 < (𝑚 + 1)))
33 peano2re 11354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
3428, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℝ)
35 ltnle 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑡 ∈ ℝ ∧ (𝑚 + 1) ∈ ℝ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3629, 34, 35syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡 < (𝑚 + 1) ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3732, 36bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3837ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡𝑚 ↔ ¬ (𝑚 + 1) ≤ 𝑡))
3938anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → ((𝑚𝑡𝑡𝑚) ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4031, 39bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
4127, 40sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡 ↔ (𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡)))
42 eleq1a 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑆 → (𝑚 = 𝑡𝑚𝑆))
4342ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚 = 𝑡𝑚𝑆))
4441, 43sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → ((𝑚𝑡 ∧ ¬ (𝑚 + 1) ≤ 𝑡) → 𝑚𝑆))
4544expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆)))
46 con1 146 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ (𝑚 + 1) ≤ 𝑡𝑚𝑆) → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡))
4745, 46syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (𝑚𝑡 → (¬ 𝑚𝑆 → (𝑚 + 1) ≤ 𝑡)))
4847com23 86 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℤ ∧ (𝑆 ⊆ ℤ ∧ 𝑡𝑆)) → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))
4948exp32 420 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (𝑡𝑆 → (¬ 𝑚𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5049com34 91 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℤ → (𝑆 ⊆ ℤ → (¬ 𝑚𝑆 → (𝑡𝑆 → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡)))))
5150imp41 425 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) ∧ 𝑡𝑆) → (𝑚𝑡 → (𝑚 + 1) ≤ 𝑡))
5251ralimdva 3146 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ 𝑚𝑆) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5352ex 412 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) → (¬ 𝑚𝑆 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5426, 53sylan9r 508 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5554pm2.43d 53 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡))
5655expl 457 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5721, 56syl 17 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ ℤ ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5820, 57sylani 604 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑚𝑡 → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
5958a2d 29 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) → (((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑚𝑡) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 (𝑚 + 1) ≤ 𝑡)))
603, 6, 9, 12, 17, 59uzind4i 12876 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ∀𝑡𝑆 𝑛𝑡))
61 breq1 5113 . . . . . . . . . . . . . 14 (𝑗 = 𝑛 → (𝑗𝑡𝑛𝑡))
6261ralbidv 3157 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑡𝑆 𝑛𝑡))
6362rspcev 3591 . . . . . . . . . . . 12 ((𝑛𝑆 ∧ ∀𝑡𝑆 𝑛𝑡) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
6463expcom 413 . . . . . . . . . . 11 (∀𝑡𝑆 𝑛𝑡 → (𝑛𝑆 → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
6564con3rr3 155 . . . . . . . . . 10 (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6665adantl 481 . . . . . . . . 9 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → (∀𝑡𝑆 𝑛𝑡 → ¬ 𝑛𝑆))
6760, 66sylcom 30 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
68 ssel 3943 . . . . . . . . . 10 (𝑆 ⊆ (ℤ𝑀) → (𝑛𝑆𝑛 ∈ (ℤ𝑀)))
6968con3rr3 155 . . . . . . . . 9 𝑛 ∈ (ℤ𝑀) → (𝑆 ⊆ (ℤ𝑀) → ¬ 𝑛𝑆))
7069adantrd 491 . . . . . . . 8 𝑛 ∈ (ℤ𝑀) → ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆))
7167, 70pm2.61i 182 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ ¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡) → ¬ 𝑛𝑆)
7271ex 412 . . . . . 6 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ¬ 𝑛𝑆))
7372alrimdv 1929 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡 → ∀𝑛 ¬ 𝑛𝑆))
74 eq0 4316 . . . . 5 (𝑆 = ∅ ↔ ∀𝑛 ¬ 𝑛𝑆)
7573, 74imbitrrdi 252 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (¬ ∃𝑗𝑆𝑡𝑆 𝑗𝑡𝑆 = ∅))
7675necon1ad 2943 . . 3 (𝑆 ⊆ (ℤ𝑀) → (𝑆 ≠ ∅ → ∃𝑗𝑆𝑡𝑆 𝑗𝑡))
7776imp 406 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑡𝑆 𝑗𝑡)
78 breq2 5114 . . . 4 (𝑡 = 𝑘 → (𝑗𝑡𝑗𝑘))
7978cbvralvw 3216 . . 3 (∀𝑡𝑆 𝑗𝑡 ↔ ∀𝑘𝑆 𝑗𝑘)
8079rexbii 3077 . 2 (∃𝑗𝑆𝑡𝑆 𝑗𝑡 ↔ ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
8177, 80sylib 218 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801
This theorem is referenced by:  uzwo2  12878  nnwo  12879  infssuzle  12897  infssuzcl  12898  infdesc  42638  uzwo4  45054
  Copyright terms: Public domain W3C validator