![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylani 603 sylan2d 604 syl2and 607 onfununi 8397 fodomfir 9396 lt2add 11775 nn0seqcvgd 16617 1stcelcls 23490 llyidm 23517 filuni 23914 ballotlemimin 34470 btwnintr 35983 ifscgr 36008 btwnconn1lem12 36062 poimir 37613 cvrntr 39382 goldbachthlem2 47420 |
Copyright terms: Public domain | W3C validator |