MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syland Structured version   Visualization version   GIF version

Theorem syland 602
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syland.1 (𝜑 → (𝜓𝜒))
syland.2 (𝜑 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syland (𝜑 → ((𝜓𝜃) → 𝜏))

Proof of Theorem syland
StepHypRef Expression
1 syland.1 . . 3 (𝜑 → (𝜓𝜒))
2 syland.2 . . . 4 (𝜑 → ((𝜒𝜃) → 𝜏))
32expd 416 . . 3 (𝜑 → (𝜒 → (𝜃𝜏)))
41, 3syld 47 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
54impd 411 1 (𝜑 → ((𝜓𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397
This theorem is referenced by:  sylani  603  sylan2d  604  syl2and  607  onfununi  7837  lt2add  10979  nn0seqcvgd  15747  1stcelcls  21757  llyidm  21784  filuni  22181  ballotlemimin  31376  btwnintr  33091  ifscgr  33116  btwnconn1lem12  33170  poimir  34477  cvrntr  36113  goldbachthlem2  43212
  Copyright terms: Public domain W3C validator