| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8313 fodomfir 9286 lt2add 11670 nn0seqcvgd 16547 1stcelcls 23355 llyidm 23382 filuni 23779 ballotlemimin 34504 btwnintr 36014 ifscgr 36039 btwnconn1lem12 36093 poimir 37654 cvrntr 39426 goldbachthlem2 47551 |
| Copyright terms: Public domain | W3C validator |