Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
3 | 2 | expd 420 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
5 | 4 | impd 415 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: sylani 607 sylan2d 608 syl2and 611 onfununi 7989 lt2add 11156 nn0seqcvgd 15959 1stcelcls 22154 llyidm 22181 filuni 22578 ballotlemimin 31984 btwnintr 33863 ifscgr 33888 btwnconn1lem12 33942 poimir 35363 cvrntr 36994 goldbachthlem2 44424 |
Copyright terms: Public domain | W3C validator |