| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8353 fodomfir 9338 lt2add 11720 nn0seqcvgd 16587 1stcelcls 23397 llyidm 23424 filuni 23821 ballotlemimin 34484 btwnintr 35983 ifscgr 36008 btwnconn1lem12 36062 poimir 37623 cvrntr 39390 goldbachthlem2 47508 |
| Copyright terms: Public domain | W3C validator |