MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syland Structured version   Visualization version   GIF version

Theorem syland 603
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syland.1 (𝜑 → (𝜓𝜒))
syland.2 (𝜑 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syland (𝜑 → ((𝜓𝜃) → 𝜏))

Proof of Theorem syland
StepHypRef Expression
1 syland.1 . . 3 (𝜑 → (𝜓𝜒))
2 syland.2 . . . 4 (𝜑 → ((𝜒𝜃) → 𝜏))
32expd 415 . . 3 (𝜑 → (𝜒 → (𝜃𝜏)))
41, 3syld 47 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
54impd 410 1 (𝜑 → ((𝜓𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylani  604  sylan2d  605  syl2and  608  onfununi  8313  fodomfir  9286  lt2add  11670  nn0seqcvgd  16547  1stcelcls  23355  llyidm  23382  filuni  23779  ballotlemimin  34504  btwnintr  36014  ifscgr  36039  btwnconn1lem12  36093  poimir  37654  cvrntr  39426  goldbachthlem2  47551
  Copyright terms: Public domain W3C validator