| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8267 fodomfir 9219 lt2add 11609 nn0seqcvgd 16483 1stcelcls 23377 llyidm 23404 filuni 23801 ballotlemimin 34540 rankfilimb 35134 btwnintr 36084 ifscgr 36109 btwnconn1lem12 36163 poimir 37714 cvrntr 39545 goldbachthlem2 47671 |
| Copyright terms: Public domain | W3C validator |