![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
3 | 2 | expd 416 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
5 | 4 | impd 411 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8343 lt2add 11703 nn0seqcvgd 16511 1stcelcls 23185 llyidm 23212 filuni 23609 ballotlemimin 33790 btwnintr 35283 ifscgr 35308 btwnconn1lem12 35362 poimir 36824 cvrntr 38599 goldbachthlem2 46513 |
Copyright terms: Public domain | W3C validator |