| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8310 fodomfir 9279 lt2add 11663 nn0seqcvgd 16540 1stcelcls 23348 llyidm 23375 filuni 23772 ballotlemimin 34497 btwnintr 36007 ifscgr 36032 btwnconn1lem12 36086 poimir 37647 cvrntr 39419 goldbachthlem2 47547 |
| Copyright terms: Public domain | W3C validator |