| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syland | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syland.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syland.2 | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syland | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syland.2 | . . . 4 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | expd 415 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) |
| 4 | 1, 3 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) |
| 5 | 4 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylani 604 sylan2d 605 syl2and 608 onfununi 8271 fodomfir 9237 lt2add 11623 nn0seqcvgd 16499 1stcelcls 23364 llyidm 23391 filuni 23788 ballotlemimin 34476 btwnintr 35995 ifscgr 36020 btwnconn1lem12 36074 poimir 37635 cvrntr 39407 goldbachthlem2 47534 |
| Copyright terms: Public domain | W3C validator |