MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmdvds Structured version   Visualization version   GIF version

Theorem lcmdvds 16646
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 22 . . . . . 6 (0 ∥ 𝐾 → 0 ∥ 𝐾)
2 breq1 5145 . . . . . . . 8 (𝑀 = 0 → (𝑀𝐾 ↔ 0 ∥ 𝐾))
32adantl 481 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 ↔ 0 ∥ 𝐾))
4 oveq1 7439 . . . . . . . . 9 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
5 0z 12626 . . . . . . . . . . 11 0 ∈ ℤ
6 lcmcom 16631 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = (𝑁 lcm 0))
75, 6mpan 690 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0 lcm 𝑁) = (𝑁 lcm 0))
8 lcm0val 16632 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
97, 8eqtrd 2776 . . . . . . . . 9 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
104, 9sylan9eqr 2798 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
1110breq1d 5152 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
123, 11imbi12d 344 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
131, 12mpbiri 258 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
14133ad2antl3 1187 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
1514adantrd 491 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
1615ex 412 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
17 breq1 5145 . . . . . . . 8 (𝑁 = 0 → (𝑁𝐾 ↔ 0 ∥ 𝐾))
1817adantl 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 ↔ 0 ∥ 𝐾))
19 oveq2 7440 . . . . . . . . 9 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
20 lcm0val 16632 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2119, 20sylan9eqr 2798 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
2221breq1d 5152 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
2318, 22imbi12d 344 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
241, 23mpbiri 258 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
25243ad2antl2 1186 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
2625adantld 490 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
2726ex 412 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
28 neanior 3034 . . . . . 6 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
29 lcmcl 16639 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12641 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
31 dvds0 16310 . . . . . . . . . . . . . . . . 17 ((𝑀 lcm 𝑁) ∈ ℤ → (𝑀 lcm 𝑁) ∥ 0)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∥ 0)
3332a1d 25 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
3433adantr 480 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
35 breq2 5146 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑀𝐾𝑀 ∥ 0))
36 breq2 5146 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑁𝐾𝑁 ∥ 0))
3735, 36anbi12d 632 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 ∥ 0 ∧ 𝑁 ∥ 0)))
38 breq2 5146 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ 0))
3937, 38imbi12d 344 . . . . . . . . . . . . . . 15 (𝐾 = 0 → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4039adantl 481 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4134, 40mpbird 257 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4241adantrl 716 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4342adantllr 719 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4443adantlrr 721 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4544anassrs 467 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
46 nnabscl 15365 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
47 nnabscl 15365 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
48 nnabscl 15365 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (abs‘𝐾) ∈ ℕ)
49 lcmgcdlem 16644 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾))))
5049simprd 495 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5148, 50sylani 604 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5246, 47, 51syl2an 596 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5352expdimp 452 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
54 dvdsabsb 16314 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾𝑀 ∥ (abs‘𝐾)))
55 zabscl 15353 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℤ)
56 absdvdsb 16313 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5755, 56sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5854, 57bitrd 279 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5958adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
60 dvdsabsb 16314 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾𝑁 ∥ (abs‘𝐾)))
61 absdvdsb 16313 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6255, 61sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6360, 62bitrd 279 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6463adantll 714 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6559, 64anbi12d 632 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))))
6665bicomd 223 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) ↔ (𝑀𝐾𝑁𝐾)))
67 lcmabs 16643 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
6867breq1d 5152 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
6968adantr 480 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
70 dvdsabsb 16314 . . . . . . . . . . . . . . . . 17 (((𝑀 lcm 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7130, 70sylan 580 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7269, 71bitr4d 282 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
7366, 72imbi12d 344 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7473adantrr 717 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7574adantllr 719 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7675adantlrr 721 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7753, 76mpbid 232 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7877anassrs 467 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 ≠ 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7945, 78pm2.61dane 3028 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
8079ex 412 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8180an4s 660 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8228, 81sylan2br 595 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8382impancom 451 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
84833impa 1109 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
85843comr 1125 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8616, 27, 85ecase3d 1034 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cfv 6560  (class class class)co 7432  0cc0 11156   · cmul 11161  cn 12267  cz 12615  abscabs 15274  cdvds 16291   gcd cgcd 16532   lcm clcm 16626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-dvds 16292  df-gcd 16533  df-lcm 16628
This theorem is referenced by:  lcmdvdsb  16651  lcmftp  16674  lcmfunsnlem1  16675  lcmfunsnlem2lem1  16676  nzin  44342
  Copyright terms: Public domain W3C validator