MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmdvds Structured version   Visualization version   GIF version

Theorem lcmdvds 16313
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 22 . . . . . 6 (0 ∥ 𝐾 → 0 ∥ 𝐾)
2 breq1 5077 . . . . . . . 8 (𝑀 = 0 → (𝑀𝐾 ↔ 0 ∥ 𝐾))
32adantl 482 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 ↔ 0 ∥ 𝐾))
4 oveq1 7282 . . . . . . . . 9 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
5 0z 12330 . . . . . . . . . . 11 0 ∈ ℤ
6 lcmcom 16298 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 lcm 𝑁) = (𝑁 lcm 0))
75, 6mpan 687 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0 lcm 𝑁) = (𝑁 lcm 0))
8 lcm0val 16299 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
97, 8eqtrd 2778 . . . . . . . . 9 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
104, 9sylan9eqr 2800 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
1110breq1d 5084 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
123, 11imbi12d 345 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
131, 12mpbiri 257 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
14133ad2antl3 1186 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
1514adantrd 492 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
1615ex 413 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
17 breq1 5077 . . . . . . . 8 (𝑁 = 0 → (𝑁𝐾 ↔ 0 ∥ 𝐾))
1817adantl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 ↔ 0 ∥ 𝐾))
19 oveq2 7283 . . . . . . . . 9 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
20 lcm0val 16299 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
2119, 20sylan9eqr 2800 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
2221breq1d 5084 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ 0 ∥ 𝐾))
2318, 22imbi12d 345 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → ((𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ (0 ∥ 𝐾 → 0 ∥ 𝐾)))
241, 23mpbiri 257 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
25243ad2antl2 1185 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑁𝐾 → (𝑀 lcm 𝑁) ∥ 𝐾))
2625adantld 491 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
2726ex 413 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
28 neanior 3037 . . . . . 6 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∨ 𝑁 = 0))
29 lcmcl 16306 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12424 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
31 dvds0 15981 . . . . . . . . . . . . . . . . 17 ((𝑀 lcm 𝑁) ∈ ℤ → (𝑀 lcm 𝑁) ∥ 0)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∥ 0)
3332a1d 25 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
3433adantr 481 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0))
35 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑀𝐾𝑀 ∥ 0))
36 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝐾 = 0 → (𝑁𝐾𝑁 ∥ 0))
3735, 36anbi12d 631 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀𝐾𝑁𝐾) ↔ (𝑀 ∥ 0 ∧ 𝑁 ∥ 0)))
38 breq2 5078 . . . . . . . . . . . . . . . 16 (𝐾 = 0 → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ 0))
3937, 38imbi12d 345 . . . . . . . . . . . . . . 15 (𝐾 = 0 → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4039adantl 482 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → (((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾) ↔ ((𝑀 ∥ 0 ∧ 𝑁 ∥ 0) → (𝑀 lcm 𝑁) ∥ 0)))
4134, 40mpbird 256 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4241adantrl 713 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4342adantllr 716 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4443adantlrr 718 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
4544anassrs 468 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
46 nnabscl 15037 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
47 nnabscl 15037 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
48 nnabscl 15037 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (abs‘𝐾) ∈ ℕ)
49 lcmgcdlem 16311 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((((abs‘𝑀) lcm (abs‘𝑁)) · ((abs‘𝑀) gcd (abs‘𝑁))) = (abs‘((abs‘𝑀) · (abs‘𝑁))) ∧ (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾))))
5049simprd 496 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((abs‘𝐾) ∈ ℕ ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5148, 50sylani 604 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5246, 47, 51syl2an 596 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) ∧ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
5352expdimp 453 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)))
54 dvdsabsb 15985 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾𝑀 ∥ (abs‘𝐾)))
55 zabscl 15025 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℤ)
56 absdvdsb 15984 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5755, 56sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ (abs‘𝐾) ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5854, 57bitrd 278 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
5958adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (abs‘𝑀) ∥ (abs‘𝐾)))
60 dvdsabsb 15985 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾𝑁 ∥ (abs‘𝐾)))
61 absdvdsb 15984 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (abs‘𝐾) ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6255, 61sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ (abs‘𝐾) ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6360, 62bitrd 278 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6463adantll 711 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (abs‘𝑁) ∥ (abs‘𝐾)))
6559, 64anbi12d 631 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) ↔ ((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾))))
6665bicomd 222 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) ↔ (𝑀𝐾𝑁𝐾)))
67 lcmabs 16310 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
6867breq1d 5084 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
6968adantr 481 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
70 dvdsabsb 15985 . . . . . . . . . . . . . . . . 17 (((𝑀 lcm 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7130, 70sylan 580 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑀 lcm 𝑁) ∥ 𝐾 ↔ (𝑀 lcm 𝑁) ∥ (abs‘𝐾)))
7269, 71bitr4d 281 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾))
7366, 72imbi12d 345 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7473adantrr 714 . . . . . . . . . . . . 13 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7574adantllr 716 . . . . . . . . . . . 12 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7675adantlrr 718 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((((abs‘𝑀) ∥ (abs‘𝐾) ∧ (abs‘𝑁) ∥ (abs‘𝐾)) → ((abs‘𝑀) lcm (abs‘𝑁)) ∥ (abs‘𝐾)) ↔ ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
7753, 76mpbid 231 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7877anassrs 468 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) ∧ 𝐾 ≠ 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
7945, 78pm2.61dane 3032 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝐾 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
8079ex 413 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8180an4s 657 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8228, 81sylan2br 595 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝐾 ∈ ℤ → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8382impancom 452 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
84833impa 1109 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
85843comr 1124 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)))
8616, 27, 85ecase3d 1031 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871   · cmul 10876  cn 11973  cz 12319  abscabs 14945  cdvds 15963   gcd cgcd 16201   lcm clcm 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-lcm 16295
This theorem is referenced by:  lcmdvdsb  16318  lcmftp  16341  lcmfunsnlem1  16342  lcmfunsnlem2lem1  16343  nzin  41936
  Copyright terms: Public domain W3C validator