MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Visualization version   GIF version

Theorem supxrun 13096
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))

Proof of Theorem supxrun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4124 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ↔ (𝐴𝐵) ⊆ ℝ*)
21biimpi 215 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐴𝐵) ⊆ ℝ*)
323adant3 1132 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝐴𝐵) ⊆ ℝ*)
4 supxrcl 13095 . . 3 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
543ad2ant2 1134 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
6 elun 4089 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
7 xrltso 12921 . . . . . . . . 9 < Or ℝ*
87a1i 11 . . . . . . . 8 (𝐴 ⊆ ℝ* → < Or ℝ*)
9 xrsupss 13089 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐴 𝑧 < 𝑤)))
108, 9supub 9262 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
11103ad2ant1 1133 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
12 supxrcl 13095 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
1312ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
144ad2antlr 725 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
15 ssel2 3921 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
1615adantlr 713 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
17 xrlelttr 12936 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*𝑥 ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1813, 14, 16, 17syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1918expdimp 454 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (sup(𝐵, ℝ*, < ) < 𝑥 → sup(𝐴, ℝ*, < ) < 𝑥))
2019con3d 152 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2120exp41 436 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (𝑥𝐴 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
2221com34 91 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
23223imp 1111 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))
2411, 23mpdd 43 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
257a1i 11 . . . . . . 7 (𝐵 ⊆ ℝ* → < Or ℝ*)
26 xrsupss 13089 . . . . . . 7 (𝐵 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐵 𝑧 < 𝑤)))
2725, 26supub 9262 . . . . . 6 (𝐵 ⊆ ℝ* → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
28273ad2ant2 1134 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2924, 28jaod 857 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ((𝑥𝐴𝑥𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
306, 29biimtrid 241 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥 ∈ (𝐴𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
3130ralrimiv 3139 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥)
32 rexr 11067 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
33 xrsupss 13089 . . . . . . . 8 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑥 → ∃𝑦𝐵 𝑧 < 𝑦)))
3425, 33suplub 9263 . . . . . . 7 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ*𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
3532, 34sylani 605 . . . . . 6 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
36 elun2 4117 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3736anim1i 616 . . . . . . 7 ((𝑦𝐵𝑥 < 𝑦) → (𝑦 ∈ (𝐴𝐵) ∧ 𝑥 < 𝑦))
3837reximi2 3079 . . . . . 6 (∃𝑦𝐵 𝑥 < 𝑦 → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)
3935, 38syl6 35 . . . . 5 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
4039expd 417 . . . 4 (𝐵 ⊆ ℝ* → (𝑥 ∈ ℝ → (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)))
4140ralrimiv 3139 . . 3 (𝐵 ⊆ ℝ* → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
42413ad2ant2 1134 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
43 supxr 13093 . 2 ((((𝐴𝐵) ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) ∧ (∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
443, 5, 31, 42, 43syl22anc 837 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wral 3062  wrex 3071  cun 3890  wss 3892   class class class wbr 5081   Or wor 5513  supcsup 9243  cr 10916  *cxr 11054   < clt 11055  cle 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254
This theorem is referenced by:  supxrmnf  13097  xpsdsval  23579
  Copyright terms: Public domain W3C validator