MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Visualization version   GIF version

Theorem supxrun 13060
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))

Proof of Theorem supxrun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4117 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ↔ (𝐴𝐵) ⊆ ℝ*)
21biimpi 215 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐴𝐵) ⊆ ℝ*)
323adant3 1131 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝐴𝐵) ⊆ ℝ*)
4 supxrcl 13059 . . 3 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
543ad2ant2 1133 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
6 elun 4082 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
7 xrltso 12885 . . . . . . . . 9 < Or ℝ*
87a1i 11 . . . . . . . 8 (𝐴 ⊆ ℝ* → < Or ℝ*)
9 xrsupss 13053 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐴 𝑧 < 𝑤)))
108, 9supub 9205 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
11103ad2ant1 1132 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
12 supxrcl 13059 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
1312ad2antrr 723 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
144ad2antlr 724 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
15 ssel2 3915 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
1615adantlr 712 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
17 xrlelttr 12900 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*𝑥 ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1813, 14, 16, 17syl3anc 1370 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1918expdimp 453 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (sup(𝐵, ℝ*, < ) < 𝑥 → sup(𝐴, ℝ*, < ) < 𝑥))
2019con3d 152 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2120exp41 435 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (𝑥𝐴 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
2221com34 91 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
23223imp 1110 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))
2411, 23mpdd 43 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
257a1i 11 . . . . . . 7 (𝐵 ⊆ ℝ* → < Or ℝ*)
26 xrsupss 13053 . . . . . . 7 (𝐵 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐵 𝑧 < 𝑤)))
2725, 26supub 9205 . . . . . 6 (𝐵 ⊆ ℝ* → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
28273ad2ant2 1133 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2924, 28jaod 856 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ((𝑥𝐴𝑥𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
306, 29syl5bi 241 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥 ∈ (𝐴𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
3130ralrimiv 3107 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥)
32 rexr 11031 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
33 xrsupss 13053 . . . . . . . 8 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑥 → ∃𝑦𝐵 𝑧 < 𝑦)))
3425, 33suplub 9206 . . . . . . 7 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ*𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
3532, 34sylani 604 . . . . . 6 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
36 elun2 4110 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3736anim1i 615 . . . . . . 7 ((𝑦𝐵𝑥 < 𝑦) → (𝑦 ∈ (𝐴𝐵) ∧ 𝑥 < 𝑦))
3837reximi2 3173 . . . . . 6 (∃𝑦𝐵 𝑥 < 𝑦 → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)
3935, 38syl6 35 . . . . 5 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
4039expd 416 . . . 4 (𝐵 ⊆ ℝ* → (𝑥 ∈ ℝ → (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)))
4140ralrimiv 3107 . . 3 (𝐵 ⊆ ℝ* → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
42413ad2ant2 1133 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
43 supxr 13057 . 2 ((((𝐴𝐵) ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) ∧ (∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
443, 5, 31, 42, 43syl22anc 836 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cun 3884  wss 3886   class class class wbr 5073   Or wor 5497  supcsup 9186  cr 10880  *cxr 11018   < clt 11019  cle 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-po 5498  df-so 5499  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-sup 9188  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218
This theorem is referenced by:  supxrmnf  13061  xpsdsval  23544
  Copyright terms: Public domain W3C validator