MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Visualization version   GIF version

Theorem supxrun 13295
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))

Proof of Theorem supxrun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4185 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ↔ (𝐴𝐵) ⊆ ℝ*)
21biimpi 215 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐴𝐵) ⊆ ℝ*)
323adant3 1133 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝐴𝐵) ⊆ ℝ*)
4 supxrcl 13294 . . 3 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
543ad2ant2 1135 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
6 elun 4149 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
7 xrltso 13120 . . . . . . . . 9 < Or ℝ*
87a1i 11 . . . . . . . 8 (𝐴 ⊆ ℝ* → < Or ℝ*)
9 xrsupss 13288 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐴 𝑧 < 𝑤)))
108, 9supub 9454 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
11103ad2ant1 1134 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
12 supxrcl 13294 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
1312ad2antrr 725 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
144ad2antlr 726 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
15 ssel2 3978 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
1615adantlr 714 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
17 xrlelttr 13135 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*𝑥 ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1813, 14, 16, 17syl3anc 1372 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1918expdimp 454 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (sup(𝐵, ℝ*, < ) < 𝑥 → sup(𝐴, ℝ*, < ) < 𝑥))
2019con3d 152 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2120exp41 436 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (𝑥𝐴 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
2221com34 91 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
23223imp 1112 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))
2411, 23mpdd 43 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
257a1i 11 . . . . . . 7 (𝐵 ⊆ ℝ* → < Or ℝ*)
26 xrsupss 13288 . . . . . . 7 (𝐵 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐵 𝑧 < 𝑤)))
2725, 26supub 9454 . . . . . 6 (𝐵 ⊆ ℝ* → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
28273ad2ant2 1135 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2924, 28jaod 858 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ((𝑥𝐴𝑥𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
306, 29biimtrid 241 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥 ∈ (𝐴𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
3130ralrimiv 3146 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥)
32 rexr 11260 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
33 xrsupss 13288 . . . . . . . 8 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑥 → ∃𝑦𝐵 𝑧 < 𝑦)))
3425, 33suplub 9455 . . . . . . 7 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ*𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
3532, 34sylani 605 . . . . . 6 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
36 elun2 4178 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3736anim1i 616 . . . . . . 7 ((𝑦𝐵𝑥 < 𝑦) → (𝑦 ∈ (𝐴𝐵) ∧ 𝑥 < 𝑦))
3837reximi2 3080 . . . . . 6 (∃𝑦𝐵 𝑥 < 𝑦 → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)
3935, 38syl6 35 . . . . 5 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
4039expd 417 . . . 4 (𝐵 ⊆ ℝ* → (𝑥 ∈ ℝ → (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)))
4140ralrimiv 3146 . . 3 (𝐵 ⊆ ℝ* → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
42413ad2ant2 1135 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
43 supxr 13292 . 2 ((((𝐴𝐵) ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) ∧ (∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
443, 5, 31, 42, 43syl22anc 838 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cun 3947  wss 3949   class class class wbr 5149   Or wor 5588  supcsup 9435  cr 11109  *cxr 11247   < clt 11248  cle 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447
This theorem is referenced by:  supxrmnf  13296  xpsdsval  23887
  Copyright terms: Public domain W3C validator