MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Visualization version   GIF version

Theorem supxrun 13294
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))

Proof of Theorem supxrun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4184 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ↔ (𝐴𝐵) ⊆ ℝ*)
21biimpi 215 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐴𝐵) ⊆ ℝ*)
323adant3 1132 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝐴𝐵) ⊆ ℝ*)
4 supxrcl 13293 . . 3 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
543ad2ant2 1134 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
6 elun 4148 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
7 xrltso 13119 . . . . . . . . 9 < Or ℝ*
87a1i 11 . . . . . . . 8 (𝐴 ⊆ ℝ* → < Or ℝ*)
9 xrsupss 13287 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐴 𝑧 < 𝑤)))
108, 9supub 9453 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
11103ad2ant1 1133 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
12 supxrcl 13293 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
1312ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
144ad2antlr 725 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
15 ssel2 3977 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
1615adantlr 713 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
17 xrlelttr 13134 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*𝑥 ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1813, 14, 16, 17syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1918expdimp 453 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (sup(𝐵, ℝ*, < ) < 𝑥 → sup(𝐴, ℝ*, < ) < 𝑥))
2019con3d 152 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2120exp41 435 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (𝑥𝐴 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
2221com34 91 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
23223imp 1111 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))
2411, 23mpdd 43 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
257a1i 11 . . . . . . 7 (𝐵 ⊆ ℝ* → < Or ℝ*)
26 xrsupss 13287 . . . . . . 7 (𝐵 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐵 𝑧 < 𝑤)))
2725, 26supub 9453 . . . . . 6 (𝐵 ⊆ ℝ* → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
28273ad2ant2 1134 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2924, 28jaod 857 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ((𝑥𝐴𝑥𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
306, 29biimtrid 241 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥 ∈ (𝐴𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
3130ralrimiv 3145 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥)
32 rexr 11259 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
33 xrsupss 13287 . . . . . . . 8 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑥 → ∃𝑦𝐵 𝑧 < 𝑦)))
3425, 33suplub 9454 . . . . . . 7 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ*𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
3532, 34sylani 604 . . . . . 6 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
36 elun2 4177 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3736anim1i 615 . . . . . . 7 ((𝑦𝐵𝑥 < 𝑦) → (𝑦 ∈ (𝐴𝐵) ∧ 𝑥 < 𝑦))
3837reximi2 3079 . . . . . 6 (∃𝑦𝐵 𝑥 < 𝑦 → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)
3935, 38syl6 35 . . . . 5 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
4039expd 416 . . . 4 (𝐵 ⊆ ℝ* → (𝑥 ∈ ℝ → (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)))
4140ralrimiv 3145 . . 3 (𝐵 ⊆ ℝ* → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
42413ad2ant2 1134 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
43 supxr 13291 . 2 ((((𝐴𝐵) ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) ∧ (∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
443, 5, 31, 42, 43syl22anc 837 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cun 3946  wss 3948   class class class wbr 5148   Or wor 5587  supcsup 9434  cr 11108  *cxr 11246   < clt 11247  cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by:  supxrmnf  13295  xpsdsval  23886
  Copyright terms: Public domain W3C validator