Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpeq3d | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
tpeq3d | ⊢ (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | tpeq3 4677 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-tp 4563 |
This theorem is referenced by: tpeq123d 4681 fntpb 7067 erngset 38741 erngset-rN 38749 |
Copyright terms: Public domain | W3C validator |