MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq2d Structured version   Visualization version   GIF version

Theorem tpeq2d 4713
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq2d (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})

Proof of Theorem tpeq2d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq2 4710 . 2 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
31, 2syl 17 1 (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {ctp 4596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595  df-tp 4597
This theorem is referenced by:  tpeq123d  4715  fntpb  7186  erngset  40801  erngset-rN  40809
  Copyright terms: Public domain W3C validator