MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq2d Structured version   Visualization version   GIF version

Theorem tpeq2d 4682
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq2d (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})

Proof of Theorem tpeq2d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq2 4679 . 2 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
31, 2syl 17 1 (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564  df-tp 4566
This theorem is referenced by:  tpeq123d  4684  fntpb  7085  erngset  38814  erngset-rN  38822
  Copyright terms: Public domain W3C validator