| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | tpeq1d 4698 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
| 3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | tpeq2d 4699 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
| 5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | tpeq3d 4700 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| 7 | 2, 4, 6 | 3eqtrd 2770 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: fz0tp 13528 fz0to5un2tp 13531 fzo0to3tp 13652 fzo1to4tp 13654 prdsval 17359 imasval 17415 fucval 17868 fucpropd 17887 setcval 17984 catcval 18007 estrcval 18030 xpcval 18083 efmnd 18778 dfcnfldOLD 21308 psrval 21853 om1val 24958 s3rnOLD 32925 rlocval 33224 idlsrgval 33466 ldualset 39170 erngfset 40844 erngfset-rN 40852 dvafset 41049 dvaset 41050 dvhfset 41125 dvhset 41126 hlhilset 41979 rabren3dioph 42854 mendval 43218 oaun3 43421 nnsum4primesodd 47833 nnsum4primesoddALTV 47834 rngcvalALTV 48302 ringcvalALTV 48326 mndtcval 49617 |
| Copyright terms: Public domain | W3C validator |