![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | tpeq1d 4750 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | tpeq2d 4751 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | tpeq3d 4752 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
7 | 2, 4, 6 | 3eqtrd 2779 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {ctp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 df-tp 4636 |
This theorem is referenced by: fz0tp 13665 fz0to5un2tp 13668 fzo0to3tp 13788 fzo1to4tp 13790 prdsval 17502 imasval 17558 fucval 18014 fucpropd 18034 setcval 18131 catcval 18154 estrcval 18179 xpcval 18233 efmnd 18896 dfcnfldOLD 21398 psrval 21953 om1val 25077 s3rnOLD 32915 rlocval 33246 idlsrgval 33511 ldualset 39107 erngfset 40782 erngfset-rN 40790 dvafset 40987 dvaset 40988 dvhfset 41063 dvhset 41064 hlhilset 41917 rabren3dioph 42803 mendval 43168 oaun3 43372 nnsum4primesodd 47721 nnsum4primesoddALTV 47722 rngcvalALTV 48109 ringcvalALTV 48133 mndtcval 48888 |
Copyright terms: Public domain | W3C validator |