MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Visualization version   GIF version

Theorem tpeq123d 4753
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
tpeq123d.2 (𝜑𝐶 = 𝐷)
tpeq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
tpeq123d (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21tpeq1d 4750 . 2 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸})
3 tpeq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43tpeq2d 4751 . 2 (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸})
5 tpeq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65tpeq3d 4752 . 2 (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹})
72, 4, 63eqtrd 2779 1 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {ctp 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-sn 4632  df-pr 4634  df-tp 4636
This theorem is referenced by:  fz0tp  13665  fz0to5un2tp  13668  fzo0to3tp  13788  fzo1to4tp  13790  prdsval  17502  imasval  17558  fucval  18014  fucpropd  18034  setcval  18131  catcval  18154  estrcval  18179  xpcval  18233  efmnd  18896  dfcnfldOLD  21398  psrval  21953  om1val  25077  s3rnOLD  32915  rlocval  33246  idlsrgval  33511  ldualset  39107  erngfset  40782  erngfset-rN  40790  dvafset  40987  dvaset  40988  dvhfset  41063  dvhset  41064  hlhilset  41917  rabren3dioph  42803  mendval  43168  oaun3  43372  nnsum4primesodd  47721  nnsum4primesoddALTV  47722  rngcvalALTV  48109  ringcvalALTV  48133  mndtcval  48888
  Copyright terms: Public domain W3C validator