![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | tpeq1d 4748 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | tpeq2d 4749 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | tpeq3d 4750 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
7 | 2, 4, 6 | 3eqtrd 2774 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {ctp 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 df-sn 4628 df-pr 4630 df-tp 4632 |
This theorem is referenced by: fz0tp 13606 fz0to4untppr 13608 fzo0to3tp 13722 fzo1to4tp 13724 prdsval 17405 imasval 17461 fucval 17914 fucpropd 17934 setcval 18031 catcval 18054 estrcval 18079 xpcval 18133 efmnd 18787 psrval 21687 om1val 24777 s3rn 32379 idlsrgval 32891 gg-dfcnfld 35473 ldualset 38298 erngfset 39973 erngfset-rN 39981 dvafset 40178 dvaset 40179 dvhfset 40254 dvhset 40255 hlhilset 41108 rabren3dioph 41855 mendval 42227 oaun3 42434 nnsum4primesodd 46762 nnsum4primesoddALTV 46763 rngcvalALTV 46947 ringcvalALTV 46993 mndtcval 47792 |
Copyright terms: Public domain | W3C validator |