| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | tpeq1d 4721 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
| 3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | tpeq2d 4722 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
| 5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | tpeq3d 4723 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| 7 | 2, 4, 6 | 3eqtrd 2774 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: fz0tp 13645 fz0to5un2tp 13648 fzo0to3tp 13768 fzo1to4tp 13770 prdsval 17469 imasval 17525 fucval 17974 fucpropd 17993 setcval 18090 catcval 18113 estrcval 18136 xpcval 18189 efmnd 18848 dfcnfldOLD 21331 psrval 21875 om1val 24981 s3rnOLD 32921 rlocval 33254 idlsrgval 33518 ldualset 39143 erngfset 40818 erngfset-rN 40826 dvafset 41023 dvaset 41024 dvhfset 41099 dvhset 41100 hlhilset 41953 rabren3dioph 42838 mendval 43203 oaun3 43406 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 rngcvalALTV 48240 ringcvalALTV 48264 mndtcval 49456 |
| Copyright terms: Public domain | W3C validator |