MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Visualization version   GIF version

Theorem tpeq123d 4715
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
tpeq123d.2 (𝜑𝐶 = 𝐷)
tpeq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
tpeq123d (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21tpeq1d 4712 . 2 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸})
3 tpeq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43tpeq2d 4713 . 2 (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸})
5 tpeq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65tpeq3d 4714 . 2 (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹})
72, 4, 63eqtrd 2769 1 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {ctp 4596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595  df-tp 4597
This theorem is referenced by:  fz0tp  13596  fz0to5un2tp  13599  fzo0to3tp  13720  fzo1to4tp  13722  prdsval  17425  imasval  17481  fucval  17930  fucpropd  17949  setcval  18046  catcval  18069  estrcval  18092  xpcval  18145  efmnd  18804  dfcnfldOLD  21287  psrval  21831  om1val  24937  s3rnOLD  32874  rlocval  33217  idlsrgval  33481  ldualset  39125  erngfset  40800  erngfset-rN  40808  dvafset  41005  dvaset  41006  dvhfset  41081  dvhset  41082  hlhilset  41935  rabren3dioph  42810  mendval  43175  oaun3  43378  nnsum4primesodd  47801  nnsum4primesoddALTV  47802  rngcvalALTV  48257  ringcvalALTV  48281  mndtcval  49572
  Copyright terms: Public domain W3C validator