MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Visualization version   GIF version

Theorem tpeq123d 4702
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
tpeq123d.2 (𝜑𝐶 = 𝐷)
tpeq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
tpeq123d (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21tpeq1d 4699 . 2 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸})
3 tpeq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43tpeq2d 4700 . 2 (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸})
5 tpeq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65tpeq3d 4701 . 2 (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹})
72, 4, 63eqtrd 2772 1 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {ctp 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-sn 4578  df-pr 4580  df-tp 4582
This theorem is referenced by:  fz0tp  13532  fz0to5un2tp  13535  fzo0to3tp  13656  fzo1to4tp  13658  prdsval  17363  imasval  17419  fucval  17872  fucpropd  17891  setcval  17988  catcval  18011  estrcval  18034  xpcval  18087  efmnd  18782  dfcnfldOLD  21311  psrval  21856  om1val  24960  s3rnOLD  32936  rlocval  33235  idlsrgval  33477  ldualset  39247  erngfset  40921  erngfset-rN  40929  dvafset  41126  dvaset  41127  dvhfset  41202  dvhset  41203  hlhilset  42056  rabren3dioph  42935  mendval  43299  oaun3  43502  nnsum4primesodd  47923  nnsum4primesoddALTV  47924  rngcvalALTV  48392  ringcvalALTV  48416  mndtcval  49707
  Copyright terms: Public domain W3C validator