Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | tpeq1d 4638 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | tpeq2d 4639 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | tpeq3d 4640 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
7 | 2, 4, 6 | 3eqtrd 2797 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 {ctp 4526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-sn 4523 df-pr 4525 df-tp 4527 |
This theorem is referenced by: fz0tp 13057 fz0to4untppr 13059 fzo0to3tp 13172 fzo1to4tp 13174 prdsval 16786 imasval 16842 fucval 17287 fucpropd 17306 setcval 17403 catcval 17422 estrcval 17440 xpcval 17493 efmnd 18101 psrval 20677 om1val 23731 s3rn 30744 idlsrgval 31169 ldualset 36723 erngfset 38397 erngfset-rN 38405 dvafset 38602 dvaset 38603 dvhfset 38678 dvhset 38679 hlhilset 39532 rabren3dioph 40151 mendval 40522 nnsum4primesodd 44703 nnsum4primesoddALTV 44704 rngcvalALTV 44974 ringcvalALTV 45020 |
Copyright terms: Public domain | W3C validator |