| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | tpeq1d 4709 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
| 3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | tpeq2d 4710 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
| 5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | tpeq3d 4711 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| 7 | 2, 4, 6 | 3eqtrd 2768 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: fz0tp 13589 fz0to5un2tp 13592 fzo0to3tp 13713 fzo1to4tp 13715 prdsval 17418 imasval 17474 fucval 17923 fucpropd 17942 setcval 18039 catcval 18062 estrcval 18085 xpcval 18138 efmnd 18797 dfcnfldOLD 21280 psrval 21824 om1val 24930 s3rnOLD 32867 rlocval 33210 idlsrgval 33474 ldualset 39118 erngfset 40793 erngfset-rN 40801 dvafset 40998 dvaset 40999 dvhfset 41074 dvhset 41075 hlhilset 41928 rabren3dioph 42803 mendval 43168 oaun3 43371 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 rngcvalALTV 48253 ringcvalALTV 48277 mndtcval 49568 |
| Copyright terms: Public domain | W3C validator |