MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Visualization version   GIF version

Theorem tpeq123d 4712
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
tpeq123d.2 (𝜑𝐶 = 𝐷)
tpeq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
tpeq123d (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21tpeq1d 4709 . 2 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸})
3 tpeq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43tpeq2d 4710 . 2 (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸})
5 tpeq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65tpeq3d 4711 . 2 (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹})
72, 4, 63eqtrd 2768 1 (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {ctp 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-sn 4590  df-pr 4592  df-tp 4594
This theorem is referenced by:  fz0tp  13589  fz0to5un2tp  13592  fzo0to3tp  13713  fzo1to4tp  13715  prdsval  17418  imasval  17474  fucval  17923  fucpropd  17942  setcval  18039  catcval  18062  estrcval  18085  xpcval  18138  efmnd  18797  dfcnfldOLD  21280  psrval  21824  om1val  24930  s3rnOLD  32867  rlocval  33210  idlsrgval  33474  ldualset  39118  erngfset  40793  erngfset-rN  40801  dvafset  40998  dvaset  40999  dvhfset  41074  dvhset  41075  hlhilset  41928  rabren3dioph  42803  mendval  43168  oaun3  43371  nnsum4primesodd  47797  nnsum4primesoddALTV  47798  rngcvalALTV  48253  ringcvalALTV  48277  mndtcval  49568
  Copyright terms: Public domain W3C validator