| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| tpeq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| tpeq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| tpeq123d | ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | tpeq1d 4699 | . 2 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐶, 𝐸}) |
| 3 | tpeq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | tpeq2d 4700 | . 2 ⊢ (𝜑 → {𝐵, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐸}) |
| 5 | tpeq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | tpeq3d 4701 | . 2 ⊢ (𝜑 → {𝐵, 𝐷, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| 7 | 2, 4, 6 | 3eqtrd 2768 | 1 ⊢ (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: fz0tp 13549 fz0to5un2tp 13552 fzo0to3tp 13673 fzo1to4tp 13675 prdsval 17377 imasval 17433 fucval 17886 fucpropd 17905 setcval 18002 catcval 18025 estrcval 18048 xpcval 18101 efmnd 18762 dfcnfldOLD 21295 psrval 21840 om1val 24946 s3rnOLD 32900 rlocval 33212 idlsrgval 33453 ldualset 39106 erngfset 40781 erngfset-rN 40789 dvafset 40986 dvaset 40987 dvhfset 41062 dvhset 41063 hlhilset 41916 rabren3dioph 42791 mendval 43155 oaun3 43358 nnsum4primesodd 47784 nnsum4primesoddALTV 47785 rngcvalALTV 48253 ringcvalALTV 48277 mndtcval 49568 |
| Copyright terms: Public domain | W3C validator |