| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| tpeq3 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4616 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | uneq2d 4148 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐷} ∪ {𝐴}) = ({𝐶, 𝐷} ∪ {𝐵})) |
| 3 | df-tp 4611 | . 2 ⊢ {𝐶, 𝐷, 𝐴} = ({𝐶, 𝐷} ∪ {𝐴}) | |
| 4 | df-tp 4611 | . 2 ⊢ {𝐶, 𝐷, 𝐵} = ({𝐶, 𝐷} ∪ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3929 {csn 4606 {cpr 4608 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-tp 4611 |
| This theorem is referenced by: tpeq3d 4728 tppreq3 4740 fntpb 7206 fztpval 13608 hashtpg 14508 dvh4dimN 41471 cycl3grtri 47926 grimgrtri 47928 usgrgrtrirex 47929 grlimgrtri 47975 usgrexmpl1tri 47996 |
| Copyright terms: Public domain | W3C validator |