Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq3 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | uneq2d 4093 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐷} ∪ {𝐴}) = ({𝐶, 𝐷} ∪ {𝐵})) |
3 | df-tp 4563 | . 2 ⊢ {𝐶, 𝐷, 𝐴} = ({𝐶, 𝐷} ∪ {𝐴}) | |
4 | df-tp 4563 | . 2 ⊢ {𝐶, 𝐷, 𝐵} = ({𝐶, 𝐷} ∪ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-tp 4563 |
This theorem is referenced by: tpeq3d 4680 tppreq3 4692 fntpb 7067 fztpval 13247 hashtpg 14127 dvh4dimN 39388 |
Copyright terms: Public domain | W3C validator |