MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq3 Structured version   Visualization version   GIF version

Theorem tpeq3 4711
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq3 (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})

Proof of Theorem tpeq3
StepHypRef Expression
1 sneq 4602 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21uneq2d 4134 . 2 (𝐴 = 𝐵 → ({𝐶, 𝐷} ∪ {𝐴}) = ({𝐶, 𝐷} ∪ {𝐵}))
3 df-tp 4597 . 2 {𝐶, 𝐷, 𝐴} = ({𝐶, 𝐷} ∪ {𝐴})
4 df-tp 4597 . 2 {𝐶, 𝐷, 𝐵} = ({𝐶, 𝐷} ∪ {𝐵})
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3915  {csn 4592  {cpr 4594  {ctp 4596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593  df-tp 4597
This theorem is referenced by:  tpeq3d  4714  tppreq3  4726  fntpb  7186  fztpval  13554  hashtpg  14457  dvh4dimN  41448  cycl3grtri  47950  grimgrtri  47952  usgrgrtrirex  47953  grlimgrtri  47999  usgrexmpl1tri  48020
  Copyright terms: Public domain W3C validator