Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngset-rN Structured version   Visualization version   GIF version

Theorem erngset-rN 40803
Description: The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
Assertion
Ref Expression
erngset-rN ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
Distinct variable groups:   𝑓,𝑠,𝑡,𝐾   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝐸(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem erngset-rN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 erngset.d-r . . 3 𝐷 = ((EDRingR𝐾)‘𝑊)
2 erngset.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
32erngfset-rN 40802 . . . 4 (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
43fveq1d 6913 . . 3 (𝐾𝑉 → ((EDRingR𝐾)‘𝑊) = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊))
51, 4eqtrid 2788 . 2 (𝐾𝑉𝐷 = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊))
6 fveq2 6911 . . . . . 6 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
76opeq2d 4886 . . . . 5 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩)
8 tpeq1 4748 . . . . . 6 (⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
9 erngset.e-r . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
109opeq2i 4883 . . . . . . 7 ⟨(Base‘ndx), 𝐸⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩
11 tpeq1 4748 . . . . . . 7 (⟨(Base‘ndx), 𝐸⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
1210, 11ax-mp 5 . . . . . 6 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}
138, 12eqtr4di 2794 . . . . 5 (⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
147, 13syl 17 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
156, 9eqtr4di 2794 . . . . . . 7 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
16 fveq2 6911 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
17 erngset.t-r . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
1816, 17eqtr4di 2794 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
19 eqidd 2737 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑠𝑓) ∘ (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
2018, 19mpteq12dv 5240 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2115, 15, 20mpoeq123dv 7512 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
2221opeq2d 4886 . . . . 5 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩ = ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩)
2322tpeq2d 4752 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
24 eqidd 2737 . . . . . . 7 (𝑤 = 𝑊 → (𝑡𝑠) = (𝑡𝑠))
2515, 15, 24mpoeq123dv 7512 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠)) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))
2625opeq2d 4886 . . . . 5 (𝑤 = 𝑊 → ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩ = ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩)
2726tpeq3d 4753 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
2814, 23, 273eqtrd 2780 . . 3 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
29 eqid 2736 . . 3 (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
30 tpex 7769 . . 3 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩} ∈ V
3128, 29, 30fvmpt 7020 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊) = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
325, 31sylan9eq 2796 1 ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  {ctp 4636  cop 4638  cmpt 5232  ccom 5694  cfv 6566  cmpo 7437  ndxcnx 17233  Basecbs 17251  +gcplusg 17304  .rcmulr 17305  LHypclh 39979  LTrncltrn 40096  TEndoctendo 40747  EDRingRcedring-rN 40749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-oprab 7439  df-mpo 7440  df-edring-rN 40751
This theorem is referenced by:  erngbase-rN  40804  erngfplus-rN  40805  erngfmul-rN  40808
  Copyright terms: Public domain W3C validator