Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngset-rN Structured version   Visualization version   GIF version

Theorem erngset-rN 37946
Description: The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
Assertion
Ref Expression
erngset-rN ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
Distinct variable groups:   𝑓,𝑠,𝑡,𝐾   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝐸(𝑡,𝑓,𝑠)   𝐻(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem erngset-rN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 erngset.d-r . . 3 𝐷 = ((EDRingR𝐾)‘𝑊)
2 erngset.h-r . . . . 5 𝐻 = (LHyp‘𝐾)
32erngfset-rN 37945 . . . 4 (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
43fveq1d 6674 . . 3 (𝐾𝑉 → ((EDRingR𝐾)‘𝑊) = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊))
51, 4syl5eq 2870 . 2 (𝐾𝑉𝐷 = ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊))
6 fveq2 6672 . . . . . 6 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
76opeq2d 4812 . . . . 5 (𝑤 = 𝑊 → ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩)
8 tpeq1 4680 . . . . . 6 (⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
9 erngset.e-r . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
109opeq2i 4809 . . . . . . 7 ⟨(Base‘ndx), 𝐸⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩
11 tpeq1 4680 . . . . . . 7 (⟨(Base‘ndx), 𝐸⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
1210, 11ax-mp 5 . . . . . 6 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}
138, 12syl6eqr 2876 . . . . 5 (⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩ = ⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑊)⟩ → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
147, 13syl 17 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
156, 9syl6eqr 2876 . . . . . . 7 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
16 fveq2 6672 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
17 erngset.t-r . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
1816, 17syl6eqr 2876 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
19 eqidd 2824 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑠𝑓) ∘ (𝑡𝑓)) = ((𝑠𝑓) ∘ (𝑡𝑓)))
2018, 19mpteq12dv 5153 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))) = (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2115, 15, 20mpoeq123dv 7231 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
2221opeq2d 4812 . . . . 5 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩ = ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩)
2322tpeq2d 4684 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
24 eqidd 2824 . . . . . . 7 (𝑤 = 𝑊 → (𝑡𝑠) = (𝑡𝑠))
2515, 15, 24mpoeq123dv 7231 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠)) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))
2625opeq2d 4812 . . . . 5 (𝑤 = 𝑊 → ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩ = ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩)
2726tpeq3d 4685 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
2814, 23, 273eqtrd 2862 . . 3 (𝑤 = 𝑊 → {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
29 eqid 2823 . . 3 (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})
30 tpex 7472 . . 3 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩} ∈ V
3128, 29, 30fvmpt 6770 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩})‘𝑊) = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
325, 31sylan9eq 2878 1 ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {ctp 4573  cop 4575  cmpt 5148  ccom 5561  cfv 6357  cmpo 7160  ndxcnx 16482  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  LHypclh 37122  LTrncltrn 37239  TEndoctendo 37890  EDRingRcedring-rN 37892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-oprab 7162  df-mpo 7163  df-edring-rN 37894
This theorem is referenced by:  erngbase-rN  37947  erngfplus-rN  37948  erngfmul-rN  37951
  Copyright terms: Public domain W3C validator