MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleq1 Structured version   Visualization version   GIF version

Theorem cleq1 14887
Description: Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
cleq1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} = {𝑟 ∣ (𝑆𝑟𝜑)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟
Allowed substitution hint:   𝜑(𝑟)

Proof of Theorem cleq1
StepHypRef Expression
1 cleq1lem 14886 . . 3 (𝑅 = 𝑆 → ((𝑅𝑟𝜑) ↔ (𝑆𝑟𝜑)))
21abbidv 2797 . 2 (𝑅 = 𝑆 → {𝑟 ∣ (𝑅𝑟𝜑)} = {𝑟 ∣ (𝑆𝑟𝜑)})
32inteqd 4902 1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} = {𝑟 ∣ (𝑆𝑟𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  {cab 2709  wss 3902   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-rex 3057  df-ss 3919  df-int 4898
This theorem is referenced by:  trcleq1  14893
  Copyright terms: Public domain W3C validator