Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cleq1 | Structured version Visualization version GIF version |
Description: Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1 | ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem 14793 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝑟 ∧ 𝜑) ↔ (𝑆 ⊆ 𝑟 ∧ 𝜑))) | |
2 | 1 | abbidv 2806 | . 2 ⊢ (𝑅 = 𝑆 → {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
3 | 2 | inteqd 4904 | 1 ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 {cab 2714 ⊆ wss 3902 ∩ cint 4899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-v 3444 df-in 3909 df-ss 3919 df-int 4900 |
This theorem is referenced by: trcleq1 14800 |
Copyright terms: Public domain | W3C validator |