![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleq1 | Structured version Visualization version GIF version |
Description: Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1 | ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem 15018 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝑟 ∧ 𝜑) ↔ (𝑆 ⊆ 𝑟 ∧ 𝜑))) | |
2 | 1 | abbidv 2806 | . 2 ⊢ (𝑅 = 𝑆 → {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
3 | 2 | inteqd 4956 | 1 ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 {cab 2712 ⊆ wss 3963 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ral 3060 df-rex 3069 df-ss 3980 df-int 4952 |
This theorem is referenced by: trcleq1 15025 |
Copyright terms: Public domain | W3C validator |