MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfv Structured version   Visualization version   GIF version

Theorem trclfv 14914
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfv (𝑅𝑉 → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclfv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝑅𝑉𝑅 ∈ V)
2 trclexlem 14908 . . 3 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
3 trclubg 14913 . . 3 (𝑅 ∈ V → {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
42, 3ssexd 5266 . 2 (𝑅 ∈ V → {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
5 trcleq1 14903 . . 3 (𝑟 = 𝑅 {𝑥 ∣ (𝑟𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
6 df-trcl 14901 . . 3 t+ = (𝑟 ∈ V ↦ {𝑥 ∣ (𝑟𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
75, 6fvmptg 6936 . 2 ((𝑅 ∈ V ∧ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
81, 4, 7syl2anc2 585 1 (𝑅𝑉 → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  cun 3896  wss 3898   cint 4899   × cxp 5619  dom cdm 5621  ran crn 5622  ccom 5625  cfv 6489  t+ctcl 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fv 6497  df-trcl 14901
This theorem is referenced by:  brtrclfv  14916  trclfvss  14920  trclfvub  14921  trclfvlb  14922  cotrtrclfv  14926  trclun  14928  brtrclfv2  43884
  Copyright terms: Public domain W3C validator