Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
trclfv | ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3458 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | trclexlem 14781 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
3 | trclubg 14786 | . . 3 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
4 | 2, 3 | ssexd 5262 | . 2 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
5 | trcleq1 14776 | . . 3 ⊢ (𝑟 = 𝑅 → ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
6 | df-trcl 14774 | . . 3 ⊢ t+ = (𝑟 ∈ V ↦ ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
7 | 5, 6 | fvmptg 6912 | . 2 ⊢ ((𝑅 ∈ V ∧ ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
8 | 1, 4, 7 | syl2anc2 585 | 1 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3440 ∪ cun 3894 ⊆ wss 3896 ∩ cint 4891 × cxp 5605 dom cdm 5607 ran crn 5608 ∘ ccom 5611 ‘cfv 6465 t+ctcl 14772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-iota 6417 df-fun 6467 df-fv 6473 df-trcl 14774 |
This theorem is referenced by: brtrclfv 14789 trclfvss 14793 trclfvub 14794 trclfvlb 14795 cotrtrclfv 14799 trclun 14801 brtrclfv2 41574 |
Copyright terms: Public domain | W3C validator |