MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfv Structured version   Visualization version   GIF version

Theorem trclfv 14639
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfv (𝑅𝑉 → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclfv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝑅𝑉𝑅 ∈ V)
2 trclexlem 14633 . . 3 (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
3 trclubg 14638 . . 3 (𝑅 ∈ V → {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
42, 3ssexd 5243 . 2 (𝑅 ∈ V → {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
5 trcleq1 14628 . . 3 (𝑟 = 𝑅 {𝑥 ∣ (𝑟𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
6 df-trcl 14626 . . 3 t+ = (𝑟 ∈ V ↦ {𝑥 ∣ (𝑟𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
75, 6fvmptg 6855 . 2 ((𝑅 ∈ V ∧ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
81, 4, 7syl2anc2 584 1 (𝑅𝑉 → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  cun 3881  wss 3883   cint 4876   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-trcl 14626
This theorem is referenced by:  brtrclfv  14641  trclfvss  14645  trclfvub  14646  trclfvlb  14647  cotrtrclfv  14651  trclun  14653  brtrclfv2  41224
  Copyright terms: Public domain W3C validator