![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
trclfv | ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | trclexlem 14939 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
3 | trclubg 14944 | . . 3 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
4 | 2, 3 | ssexd 5315 | . 2 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
5 | trcleq1 14934 | . . 3 ⊢ (𝑟 = 𝑅 → ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
6 | df-trcl 14932 | . . 3 ⊢ t+ = (𝑟 ∈ V ↦ ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
7 | 5, 6 | fvmptg 6987 | . 2 ⊢ ((𝑅 ∈ V ∧ ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
8 | 1, 4, 7 | syl2anc2 584 | 1 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 Vcvv 3466 ∪ cun 3939 ⊆ wss 3941 ∩ cint 4941 × cxp 5665 dom cdm 5667 ran crn 5668 ∘ ccom 5671 ‘cfv 6534 t+ctcl 14930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6486 df-fun 6536 df-fv 6542 df-trcl 14932 |
This theorem is referenced by: brtrclfv 14947 trclfvss 14951 trclfvub 14952 trclfvlb 14953 cotrtrclfv 14957 trclun 14959 brtrclfv2 42992 |
Copyright terms: Public domain | W3C validator |