| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclfv | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.) |
| Ref | Expression |
|---|---|
| trclfv | ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | trclexlem 14896 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
| 3 | trclubg 14901 | . . 3 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 4 | 2, 3 | ssexd 5257 | . 2 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
| 5 | trcleq1 14891 | . . 3 ⊢ (𝑟 = 𝑅 → ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
| 6 | df-trcl 14889 | . . 3 ⊢ t+ = (𝑟 ∈ V ↦ ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
| 7 | 5, 6 | fvmptg 6922 | . 2 ⊢ ((𝑅 ∈ V ∧ ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 8 | 1, 4, 7 | syl2anc2 585 | 1 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∩ cint 4892 × cxp 5609 dom cdm 5611 ran crn 5612 ∘ ccom 5615 ‘cfv 6476 t+ctcl 14887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fv 6484 df-trcl 14889 |
| This theorem is referenced by: brtrclfv 14904 trclfvss 14908 trclfvub 14909 trclfvlb 14910 cotrtrclfv 14914 trclun 14916 brtrclfv2 43760 |
| Copyright terms: Public domain | W3C validator |