![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
trclfv | ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3480 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | trclexlem 14977 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
3 | trclubg 14982 | . . 3 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
4 | 2, 3 | ssexd 5325 | . 2 ⊢ (𝑅 ∈ V → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
5 | trcleq1 14972 | . . 3 ⊢ (𝑟 = 𝑅 → ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
6 | df-trcl 14970 | . . 3 ⊢ t+ = (𝑟 ∈ V ↦ ∩ {𝑥 ∣ (𝑟 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
7 | 5, 6 | fvmptg 7002 | . 2 ⊢ ((𝑅 ∈ V ∧ ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
8 | 1, 4, 7 | syl2anc2 583 | 1 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 Vcvv 3461 ∪ cun 3942 ⊆ wss 3944 ∩ cint 4950 × cxp 5676 dom cdm 5678 ran crn 5679 ∘ ccom 5682 ‘cfv 6549 t+ctcl 14968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-iota 6501 df-fun 6551 df-fv 6557 df-trcl 14970 |
This theorem is referenced by: brtrclfv 14985 trclfvss 14989 trclfvub 14990 trclfvlb 14991 cotrtrclfv 14995 trclun 14997 brtrclfv2 43299 |
Copyright terms: Public domain | W3C validator |