Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trcleq2lemRP | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
trcleq2lemRP | ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1, 1 | coeq12d 5773 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐵)) |
3 | 2, 1 | sseq12d 3954 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∘ 𝐴) ⊆ 𝐴 ↔ (𝐵 ∘ 𝐵) ⊆ 𝐵)) |
4 | 3 | cleq2lem 41216 | 1 ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |