Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcvallem1 Structured version   Visualization version   GIF version

Theorem sqrtcvallem1 43620
Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 43630. (Contributed by RP, 17-May-2024.)
Hypothesis
Ref Expression
sqrtcvallem1.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcvallem1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))

Proof of Theorem sqrtcvallem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3972 . . 3 (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+))
21a1i 11 . 2 (𝜑 → (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
3 imor 853 . . . 4 (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0))
4 sqrtcvallem1.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
54biantrurd 532 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
6 reim0b 15154 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
87notbid 318 . . . . . . 7 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ ¬ (ℑ‘𝐴) = 0))
98bicomd 223 . . . . . 6 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ ¬ 𝐴 ∈ ℝ))
10 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
1110notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ℝ ↔ ¬ 𝐴 ∈ ℝ))
1211elrab 3694 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ))
1312a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
145, 9, 133bitr4d 311 . . . . 5 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ}))
154biantrurd 532 . . . . . 6 (𝜑 → (¬ 0 < (ℜ‘𝐴) ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
164recld 15229 . . . . . . 7 (𝜑 → (ℜ‘𝐴) ∈ ℝ)
17 0red 11261 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
1816, 17lenltd 11404 . . . . . 6 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ ¬ 0 < (ℜ‘𝐴)))
19 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
2019breq2d 5159 . . . . . . . . 9 (𝑥 = 𝐴 → (0 < (ℜ‘𝑥) ↔ 0 < (ℜ‘𝐴)))
2120notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 0 < (ℜ‘𝑥) ↔ ¬ 0 < (ℜ‘𝐴)))
2221elrab 3694 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴)))
2322a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
2415, 18, 233bitr4d 311 . . . . 5 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2514, 24orbi12d 918 . . . 4 (𝜑 → ((¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
263, 25bitrid 283 . . 3 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
27 elun 4162 . . . 4 (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
29 ianor 983 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)))
3029bicomi 224 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
31 elrp 13033 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
32 rere 15157 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
3332breq2d 5159 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (0 < (ℜ‘𝑥) ↔ 0 < 𝑥))
3433bicomd 223 . . . . . . . . . 10 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < (ℜ‘𝑥)))
3534pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3631, 35bitri 275 . . . . . . . 8 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3730, 36xchbinxr 335 . . . . . . 7 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ 𝑥 ∈ ℝ+)
3837rabbii 3438 . . . . . 6 {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))} = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
39 unrab 4320 . . . . . 6 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))}
40 dfdif2 3971 . . . . . 6 (ℂ ∖ ℝ+) = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
4138, 39, 403eqtr4i 2772 . . . . 5 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+)
4241a1i 11 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+))
4342eleq2d 2824 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
4426, 28, 433bitr2d 307 . 2 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
454biantrurd 532 . 2 (𝜑 → (¬ 𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
462, 44, 453bitr4d 311 1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  {crab 3432  cdif 3959  cun 3960   class class class wbr 5147  cfv 6562  cc 11150  cr 11151  0cc0 11152   < clt 11292  cle 11293  +crp 13031  cre 15132  cim 15133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-rp 13032  df-cj 15134  df-re 15135  df-im 15136
This theorem is referenced by:  sqrtcval  43630
  Copyright terms: Public domain W3C validator