Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcvallem1 Structured version   Visualization version   GIF version

Theorem sqrtcvallem1 43644
Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 43654. (Contributed by RP, 17-May-2024.)
Hypothesis
Ref Expression
sqrtcvallem1.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcvallem1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))

Proof of Theorem sqrtcvallem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3961 . . 3 (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+))
21a1i 11 . 2 (𝜑 → (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
3 imor 854 . . . 4 (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0))
4 sqrtcvallem1.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
54biantrurd 532 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
6 reim0b 15158 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
87notbid 318 . . . . . . 7 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ ¬ (ℑ‘𝐴) = 0))
98bicomd 223 . . . . . 6 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ ¬ 𝐴 ∈ ℝ))
10 eleq1 2829 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
1110notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ℝ ↔ ¬ 𝐴 ∈ ℝ))
1211elrab 3692 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ))
1312a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
145, 9, 133bitr4d 311 . . . . 5 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ}))
154biantrurd 532 . . . . . 6 (𝜑 → (¬ 0 < (ℜ‘𝐴) ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
164recld 15233 . . . . . . 7 (𝜑 → (ℜ‘𝐴) ∈ ℝ)
17 0red 11264 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
1816, 17lenltd 11407 . . . . . 6 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ ¬ 0 < (ℜ‘𝐴)))
19 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
2019breq2d 5155 . . . . . . . . 9 (𝑥 = 𝐴 → (0 < (ℜ‘𝑥) ↔ 0 < (ℜ‘𝐴)))
2120notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 0 < (ℜ‘𝑥) ↔ ¬ 0 < (ℜ‘𝐴)))
2221elrab 3692 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴)))
2322a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
2415, 18, 233bitr4d 311 . . . . 5 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2514, 24orbi12d 919 . . . 4 (𝜑 → ((¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
263, 25bitrid 283 . . 3 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
27 elun 4153 . . . 4 (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
29 ianor 984 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)))
3029bicomi 224 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
31 elrp 13036 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
32 rere 15161 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
3332breq2d 5155 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (0 < (ℜ‘𝑥) ↔ 0 < 𝑥))
3433bicomd 223 . . . . . . . . . 10 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < (ℜ‘𝑥)))
3534pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3631, 35bitri 275 . . . . . . . 8 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3730, 36xchbinxr 335 . . . . . . 7 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ 𝑥 ∈ ℝ+)
3837rabbii 3442 . . . . . 6 {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))} = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
39 unrab 4315 . . . . . 6 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))}
40 dfdif2 3960 . . . . . 6 (ℂ ∖ ℝ+) = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
4138, 39, 403eqtr4i 2775 . . . . 5 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+)
4241a1i 11 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+))
4342eleq2d 2827 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
4426, 28, 433bitr2d 307 . 2 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
454biantrurd 532 . 2 (𝜑 → (¬ 𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
462, 44, 453bitr4d 311 1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  cun 3949   class class class wbr 5143  cfv 6561  cc 11153  cr 11154  0cc0 11155   < clt 11295  cle 11296  +crp 13034  cre 15136  cim 15137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-cj 15138  df-re 15139  df-im 15140
This theorem is referenced by:  sqrtcval  43654
  Copyright terms: Public domain W3C validator