Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcvallem1 Structured version   Visualization version   GIF version

Theorem sqrtcvallem1 43655
Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 43665. (Contributed by RP, 17-May-2024.)
Hypothesis
Ref Expression
sqrtcvallem1.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcvallem1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))

Proof of Theorem sqrtcvallem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3936 . . 3 (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+))
21a1i 11 . 2 (𝜑 → (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
3 imor 853 . . . 4 (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0))
4 sqrtcvallem1.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
54biantrurd 532 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
6 reim0b 15138 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
87notbid 318 . . . . . . 7 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ ¬ (ℑ‘𝐴) = 0))
98bicomd 223 . . . . . 6 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ ¬ 𝐴 ∈ ℝ))
10 eleq1 2822 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
1110notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ℝ ↔ ¬ 𝐴 ∈ ℝ))
1211elrab 3671 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ))
1312a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
145, 9, 133bitr4d 311 . . . . 5 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ}))
154biantrurd 532 . . . . . 6 (𝜑 → (¬ 0 < (ℜ‘𝐴) ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
164recld 15213 . . . . . . 7 (𝜑 → (ℜ‘𝐴) ∈ ℝ)
17 0red 11238 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
1816, 17lenltd 11381 . . . . . 6 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ ¬ 0 < (ℜ‘𝐴)))
19 fveq2 6876 . . . . . . . . . 10 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
2019breq2d 5131 . . . . . . . . 9 (𝑥 = 𝐴 → (0 < (ℜ‘𝑥) ↔ 0 < (ℜ‘𝐴)))
2120notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 0 < (ℜ‘𝑥) ↔ ¬ 0 < (ℜ‘𝐴)))
2221elrab 3671 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴)))
2322a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
2415, 18, 233bitr4d 311 . . . . 5 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2514, 24orbi12d 918 . . . 4 (𝜑 → ((¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
263, 25bitrid 283 . . 3 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
27 elun 4128 . . . 4 (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
29 ianor 983 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)))
3029bicomi 224 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
31 elrp 13010 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
32 rere 15141 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
3332breq2d 5131 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (0 < (ℜ‘𝑥) ↔ 0 < 𝑥))
3433bicomd 223 . . . . . . . . . 10 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < (ℜ‘𝑥)))
3534pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3631, 35bitri 275 . . . . . . . 8 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3730, 36xchbinxr 335 . . . . . . 7 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ 𝑥 ∈ ℝ+)
3837rabbii 3421 . . . . . 6 {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))} = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
39 unrab 4290 . . . . . 6 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))}
40 dfdif2 3935 . . . . . 6 (ℂ ∖ ℝ+) = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
4138, 39, 403eqtr4i 2768 . . . . 5 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+)
4241a1i 11 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+))
4342eleq2d 2820 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
4426, 28, 433bitr2d 307 . 2 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
454biantrurd 532 . 2 (𝜑 → (¬ 𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
462, 44, 453bitr4d 311 1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  {crab 3415  cdif 3923  cun 3924   class class class wbr 5119  cfv 6531  cc 11127  cr 11128  0cc0 11129   < clt 11269  cle 11270  +crp 13008  cre 15116  cim 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-rp 13009  df-cj 15118  df-re 15119  df-im 15120
This theorem is referenced by:  sqrtcval  43665
  Copyright terms: Public domain W3C validator