Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcvallem1 Structured version   Visualization version   GIF version

Theorem sqrtcvallem1 41209
Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 41219. (Contributed by RP, 17-May-2024.)
Hypothesis
Ref Expression
sqrtcvallem1.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcvallem1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))

Proof of Theorem sqrtcvallem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3898 . . 3 (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+))
21a1i 11 . 2 (𝜑 → (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
3 imor 850 . . . 4 (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0))
4 sqrtcvallem1.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
54biantrurd 533 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
6 reim0b 14828 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
87notbid 318 . . . . . . 7 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ ¬ (ℑ‘𝐴) = 0))
98bicomd 222 . . . . . 6 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ ¬ 𝐴 ∈ ℝ))
10 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
1110notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ℝ ↔ ¬ 𝐴 ∈ ℝ))
1211elrab 3625 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ))
1312a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
145, 9, 133bitr4d 311 . . . . 5 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ}))
154biantrurd 533 . . . . . 6 (𝜑 → (¬ 0 < (ℜ‘𝐴) ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
164recld 14903 . . . . . . 7 (𝜑 → (ℜ‘𝐴) ∈ ℝ)
17 0red 10976 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
1816, 17lenltd 11119 . . . . . 6 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ ¬ 0 < (ℜ‘𝐴)))
19 fveq2 6776 . . . . . . . . . 10 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
2019breq2d 5088 . . . . . . . . 9 (𝑥 = 𝐴 → (0 < (ℜ‘𝑥) ↔ 0 < (ℜ‘𝐴)))
2120notbid 318 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 0 < (ℜ‘𝑥) ↔ ¬ 0 < (ℜ‘𝐴)))
2221elrab 3625 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴)))
2322a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
2415, 18, 233bitr4d 311 . . . . 5 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2514, 24orbi12d 916 . . . 4 (𝜑 → ((¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
263, 25syl5bb 283 . . 3 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
27 elun 4084 . . . 4 (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
29 ianor 979 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)))
3029bicomi 223 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
31 elrp 12730 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
32 rere 14831 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
3332breq2d 5088 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (0 < (ℜ‘𝑥) ↔ 0 < 𝑥))
3433bicomd 222 . . . . . . . . . 10 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < (ℜ‘𝑥)))
3534pm5.32i 575 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3631, 35bitri 274 . . . . . . . 8 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3730, 36xchbinxr 335 . . . . . . 7 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ 𝑥 ∈ ℝ+)
3837rabbii 3407 . . . . . 6 {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))} = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
39 unrab 4241 . . . . . 6 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))}
40 dfdif2 3897 . . . . . 6 (ℂ ∖ ℝ+) = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
4138, 39, 403eqtr4i 2776 . . . . 5 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+)
4241a1i 11 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+))
4342eleq2d 2824 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
4426, 28, 433bitr2d 307 . 2 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
454biantrurd 533 . 2 (𝜑 → (¬ 𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
462, 44, 453bitr4d 311 1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {crab 3068  cdif 3885  cun 3886   class class class wbr 5076  cfv 6435  cc 10867  cr 10868  0cc0 10869   < clt 11007  cle 11008  +crp 12728  cre 14806  cim 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-po 5505  df-so 5506  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-2 12034  df-rp 12729  df-cj 14808  df-re 14809  df-im 14810
This theorem is referenced by:  sqrtcval  41219
  Copyright terms: Public domain W3C validator