Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcvallem1 Structured version   Visualization version   GIF version

Theorem sqrtcvallem1 41128
Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 41138. (Contributed by RP, 17-May-2024.)
Hypothesis
Ref Expression
sqrtcvallem1.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
sqrtcvallem1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))

Proof of Theorem sqrtcvallem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3893 . . 3 (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+))
21a1i 11 . 2 (𝜑 → (𝐴 ∈ (ℂ ∖ ℝ+) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
3 imor 849 . . . 4 (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0))
4 sqrtcvallem1.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
54biantrurd 532 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
6 reim0b 14758 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
74, 6syl 17 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
87notbid 317 . . . . . . 7 (𝜑 → (¬ 𝐴 ∈ ℝ ↔ ¬ (ℑ‘𝐴) = 0))
98bicomd 222 . . . . . 6 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ ¬ 𝐴 ∈ ℝ))
10 eleq1 2826 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ ℝ ↔ 𝐴 ∈ ℝ))
1110notbid 317 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ℝ ↔ ¬ 𝐴 ∈ ℝ))
1211elrab 3617 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ))
1312a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ)))
145, 9, 133bitr4d 310 . . . . 5 (𝜑 → (¬ (ℑ‘𝐴) = 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ}))
154biantrurd 532 . . . . . 6 (𝜑 → (¬ 0 < (ℜ‘𝐴) ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
164recld 14833 . . . . . . 7 (𝜑 → (ℜ‘𝐴) ∈ ℝ)
17 0red 10909 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
1816, 17lenltd 11051 . . . . . 6 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ ¬ 0 < (ℜ‘𝐴)))
19 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
2019breq2d 5082 . . . . . . . . 9 (𝑥 = 𝐴 → (0 < (ℜ‘𝑥) ↔ 0 < (ℜ‘𝐴)))
2120notbid 317 . . . . . . . 8 (𝑥 = 𝐴 → (¬ 0 < (ℜ‘𝑥) ↔ ¬ 0 < (ℜ‘𝐴)))
2221elrab 3617 . . . . . . 7 (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴)))
2322a1i 11 . . . . . 6 (𝜑 → (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)} ↔ (𝐴 ∈ ℂ ∧ ¬ 0 < (ℜ‘𝐴))))
2415, 18, 233bitr4d 310 . . . . 5 (𝜑 → ((ℜ‘𝐴) ≤ 0 ↔ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2514, 24orbi12d 915 . . . 4 (𝜑 → ((¬ (ℑ‘𝐴) = 0 ∨ (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
263, 25syl5bb 282 . . 3 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
27 elun 4079 . . . 4 (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}))
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ (𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∨ 𝐴 ∈ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)})))
29 ianor 978 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)))
3029bicomi 223 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
31 elrp 12661 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
32 rere 14761 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
3332breq2d 5082 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (0 < (ℜ‘𝑥) ↔ 0 < 𝑥))
3433bicomd 222 . . . . . . . . . 10 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < (ℜ‘𝑥)))
3534pm5.32i 574 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3631, 35bitri 274 . . . . . . . 8 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < (ℜ‘𝑥)))
3730, 36xchbinxr 334 . . . . . . 7 ((¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥)) ↔ ¬ 𝑥 ∈ ℝ+)
3837rabbii 3397 . . . . . 6 {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))} = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
39 unrab 4236 . . . . . 6 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = {𝑥 ∈ ℂ ∣ (¬ 𝑥 ∈ ℝ ∨ ¬ 0 < (ℜ‘𝑥))}
40 dfdif2 3892 . . . . . 6 (ℂ ∖ ℝ+) = {𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ+}
4138, 39, 403eqtr4i 2776 . . . . 5 ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+)
4241a1i 11 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) = (ℂ ∖ ℝ+))
4342eleq2d 2824 . . 3 (𝜑 → (𝐴 ∈ ({𝑥 ∈ ℂ ∣ ¬ 𝑥 ∈ ℝ} ∪ {𝑥 ∈ ℂ ∣ ¬ 0 < (ℜ‘𝑥)}) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
4426, 28, 433bitr2d 306 . 2 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ 𝐴 ∈ (ℂ ∖ ℝ+)))
454biantrurd 532 . 2 (𝜑 → (¬ 𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ ℝ+)))
462, 44, 453bitr4d 310 1 (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  cun 3881   class class class wbr 5070  cfv 6418  cc 10800  cr 10801  0cc0 10802   < clt 10940  cle 10941  +crp 12659  cre 14736  cim 14737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  sqrtcval  41138
  Copyright terms: Public domain W3C validator