MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12d Structured version   Visualization version   GIF version

Theorem coeq12d 5804
Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12d.1 (𝜑𝐴 = 𝐵)
coeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
coeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem coeq12d
StepHypRef Expression
1 coeq12d.1 . . 3 (𝜑𝐴 = 𝐵)
21coeq1d 5801 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 coeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43coeq2d 5802 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2766 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3919  df-br 5092  df-opab 5154  df-co 5625
This theorem is referenced by:  relcnvtrg  6214  xpcoid  6237  csbcog  6244  dfac12lem1  10035  dfac12r  10038  trcleq2lem  14898  trclfvcotrg  14923  relexpaddg  14960  relexpaddd  14961  dfrtrcl2  14969  imasval  17415  cofuval  17789  cofu2nd  17792  cofuval2  17794  cofuass  17796  cofurid  17798  setcco  17990  estrcco  18036  funcestrcsetclem9  18054  funcsetcestrclem9  18069  isdir  18504  smndex1mgm  18815  symgov  19297  funcrngcsetcALT  20557  znval  21473  znle2  21491  evl1fval  22244  mdetfval  22502  mdetdiaglem  22514  ust0  24136  trust  24145  metustexhalf  24472  isngp  24512  ngppropd  24553  tngval  24555  tngngp2  24568  imsval  30663  opsqrlem3  32120  hmopidmch  32131  hmopidmpj  32132  pjidmco  32159  dfpjop  32160  cosnop  32674  tocycfv  33076  cycpm2tr  33086  cyc3genpmlem  33118  cycpmconjslem2  33122  cycpmconjs  33123  cyc3conja  33124  esplyval  33583  zhmnrg  33976  bj-imdirco  37230  dftrrels2  38618  dftrrel2  38620  istendo  40805  tendoco2  40813  tendoidcl  40814  tendococl  40817  tendoplcbv  40820  tendopl2  40822  tendoplco2  40824  tendodi1  40829  tendodi2  40830  tendo0co2  40833  tendoicl  40841  erngplus2  40849  erngplus2-rN  40857  cdlemk55u1  41010  cdlemk55u  41011  dvaplusgv  41055  dvhopvadd  41138  dvhlveclem  41153  dvhopaddN  41159  dicvaddcl  41235  dihopelvalcpre  41293  rtrclex  43656  trclubgNEW  43657  rtrclexi  43660  cnvtrcl0  43665  dfrtrcl5  43668  trcleq2lemRP  43669  trrelind  43704  trrelsuperreldg  43707  trficl  43708  trrelsuperrel2dg  43710  trclrelexplem  43750  relexpaddss  43757  dfrtrcl3  43772  clsneicnv  44144  neicvgnvo  44154  fundcmpsurbijinjpreimafv  47444  fundcmpsurinjALT  47449  rngccoALTV  48308  funcringcsetcALTV2lem9  48335  ringccoALTV  48342  funcringcsetclem9ALTV  48358  fuco112x  49370  fuco22natlem  49383  fucoppcid  49446
  Copyright terms: Public domain W3C validator