MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volun Structured version   Visualization version   GIF version

Theorem volun 25474
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
volun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))

Proof of Theorem volun
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ∈ dom vol)
2 mblss 25460 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
4 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
5 mblss 25460 . . . . . . . 8 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ⊆ ℝ)
73, 6unssd 4141 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ ℝ)
8 readdcl 11096 . . . . . . . 8 (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
98adantl 481 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
10 simprl 770 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
11 simprr 772 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐵) ∈ ℝ)
12 ovolun 25428 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
133, 10, 6, 11, 12syl22anc 838 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
14 ovollecl 25412 . . . . . . 7 (((𝐴𝐵) ⊆ ℝ ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
157, 9, 13, 14syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
16 mblsplit 25461 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
171, 7, 15, 16syl3anc 1373 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
18 simpl3 1194 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) = ∅)
19 indir 4235 . . . . . . . . . 10 ((𝐴𝐵) ∩ 𝐴) = ((𝐴𝐴) ∪ (𝐵𝐴))
20 inidm 4176 . . . . . . . . . . . 12 (𝐴𝐴) = 𝐴
21 incom 4158 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
2220, 21uneq12i 4115 . . . . . . . . . . 11 ((𝐴𝐴) ∪ (𝐵𝐴)) = (𝐴 ∪ (𝐴𝐵))
23 unabs 4214 . . . . . . . . . . 11 (𝐴 ∪ (𝐴𝐵)) = 𝐴
2422, 23eqtri 2756 . . . . . . . . . 10 ((𝐴𝐴) ∪ (𝐵𝐴)) = 𝐴
2519, 24eqtri 2756 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐴) = 𝐴
2625a1i 11 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∩ 𝐴) = 𝐴)
2726fveq2d 6832 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∩ 𝐴)) = (vol*‘𝐴))
28 uncom 4107 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
2928difeq1i 4071 . . . . . . . . . 10 ((𝐴𝐵) ∖ 𝐴) = ((𝐵𝐴) ∖ 𝐴)
30 difun2 4430 . . . . . . . . . 10 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
3129, 30eqtri 2756 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐴) = (𝐵𝐴)
3221eqeq1i 2738 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ (𝐴𝐵) = ∅)
33 disj3 4403 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
3432, 33sylbb1 237 . . . . . . . . 9 ((𝐴𝐵) = ∅ → 𝐵 = (𝐵𝐴))
3531, 34eqtr4id 2787 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐴) = 𝐵)
3635fveq2d 6832 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∖ 𝐴)) = (vol*‘𝐵))
3727, 36oveq12d 7370 . . . . . 6 ((𝐴𝐵) = ∅ → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3818, 37syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3917, 38eqtrd 2768 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
4039ex 412 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
41 mblvol 25459 . . . . . 6 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
4241eleq1d 2818 . . . . 5 (𝐴 ∈ dom vol → ((vol‘𝐴) ∈ ℝ ↔ (vol*‘𝐴) ∈ ℝ))
43 mblvol 25459 . . . . . 6 (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵))
4443eleq1d 2818 . . . . 5 (𝐵 ∈ dom vol → ((vol‘𝐵) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
4542, 44bi2anan9 638 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
46453adant3 1132 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
47 unmbl 25466 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
48 mblvol 25459 . . . . . 6 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
4947, 48syl 17 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
5041, 43oveqan12d 7371 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
5149, 50eqeq12d 2749 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
52513adant3 1132 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
5340, 46, 523imtr4d 294 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵))))
5453imp 406 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   class class class wbr 5093  dom cdm 5619  cfv 6486  (class class class)co 7352  cr 11012   + caddc 11016  cle 11154  vol*covol 25391  volcvol 25392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fl 13698  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-ovol 25393  df-vol 25394
This theorem is referenced by:  volinun  25475  volfiniun  25476  volsup  25485  ovolioo  25497  ismblfin  37721  volioc  46094  volico  46105
  Copyright terms: Public domain W3C validator