MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volun Structured version   Visualization version   GIF version

Theorem volun 25446
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
volun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))

Proof of Theorem volun
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ∈ dom vol)
2 mblss 25432 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
4 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
5 mblss 25432 . . . . . . . 8 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ⊆ ℝ)
73, 6unssd 4155 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ ℝ)
8 readdcl 11151 . . . . . . . 8 (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
98adantl 481 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
10 simprl 770 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
11 simprr 772 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐵) ∈ ℝ)
12 ovolun 25400 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
133, 10, 6, 11, 12syl22anc 838 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
14 ovollecl 25384 . . . . . . 7 (((𝐴𝐵) ⊆ ℝ ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
157, 9, 13, 14syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
16 mblsplit 25433 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
171, 7, 15, 16syl3anc 1373 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
18 simpl3 1194 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) = ∅)
19 indir 4249 . . . . . . . . . 10 ((𝐴𝐵) ∩ 𝐴) = ((𝐴𝐴) ∪ (𝐵𝐴))
20 inidm 4190 . . . . . . . . . . . 12 (𝐴𝐴) = 𝐴
21 incom 4172 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
2220, 21uneq12i 4129 . . . . . . . . . . 11 ((𝐴𝐴) ∪ (𝐵𝐴)) = (𝐴 ∪ (𝐴𝐵))
23 unabs 4228 . . . . . . . . . . 11 (𝐴 ∪ (𝐴𝐵)) = 𝐴
2422, 23eqtri 2752 . . . . . . . . . 10 ((𝐴𝐴) ∪ (𝐵𝐴)) = 𝐴
2519, 24eqtri 2752 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐴) = 𝐴
2625a1i 11 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∩ 𝐴) = 𝐴)
2726fveq2d 6862 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∩ 𝐴)) = (vol*‘𝐴))
28 uncom 4121 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
2928difeq1i 4085 . . . . . . . . . 10 ((𝐴𝐵) ∖ 𝐴) = ((𝐵𝐴) ∖ 𝐴)
30 difun2 4444 . . . . . . . . . 10 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
3129, 30eqtri 2752 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐴) = (𝐵𝐴)
3221eqeq1i 2734 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ (𝐴𝐵) = ∅)
33 disj3 4417 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
3432, 33sylbb1 237 . . . . . . . . 9 ((𝐴𝐵) = ∅ → 𝐵 = (𝐵𝐴))
3531, 34eqtr4id 2783 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐴) = 𝐵)
3635fveq2d 6862 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∖ 𝐴)) = (vol*‘𝐵))
3727, 36oveq12d 7405 . . . . . 6 ((𝐴𝐵) = ∅ → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3818, 37syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3917, 38eqtrd 2764 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
4039ex 412 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
41 mblvol 25431 . . . . . 6 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
4241eleq1d 2813 . . . . 5 (𝐴 ∈ dom vol → ((vol‘𝐴) ∈ ℝ ↔ (vol*‘𝐴) ∈ ℝ))
43 mblvol 25431 . . . . . 6 (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵))
4443eleq1d 2813 . . . . 5 (𝐵 ∈ dom vol → ((vol‘𝐵) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
4542, 44bi2anan9 638 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
46453adant3 1132 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
47 unmbl 25438 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
48 mblvol 25431 . . . . . 6 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
4947, 48syl 17 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
5041, 43oveqan12d 7406 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
5149, 50eqeq12d 2745 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
52513adant3 1132 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
5340, 46, 523imtr4d 294 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵))))
5453imp 406 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  cr 11067   + caddc 11071  cle 11209  vol*covol 25363  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-ovol 25365  df-vol 25366
This theorem is referenced by:  volinun  25447  volfiniun  25448  volsup  25457  ovolioo  25469  ismblfin  37655  volioc  45970  volico  45981
  Copyright terms: Public domain W3C validator