MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volun Structured version   Visualization version   GIF version

Theorem volun 24138
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
volun (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))

Proof of Theorem volun
StepHypRef Expression
1 simpl1 1186 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ∈ dom vol)
2 mblss 24124 . . . . . . . 8 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐴 ⊆ ℝ)
4 simpl2 1187 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ∈ dom vol)
5 mblss 24124 . . . . . . . 8 (𝐵 ∈ dom vol → 𝐵 ⊆ ℝ)
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → 𝐵 ⊆ ℝ)
73, 6unssd 4160 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) ⊆ ℝ)
8 readdcl 10612 . . . . . . . 8 (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
98adantl 484 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
10 simprl 769 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐴) ∈ ℝ)
11 simprr 771 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝐵) ∈ ℝ)
12 ovolun 24092 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
133, 10, 6, 11, 12syl22anc 836 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵)))
14 ovollecl 24076 . . . . . . 7 (((𝐴𝐵) ⊆ ℝ ∧ ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
157, 9, 13, 14syl3anc 1366 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) ∈ ℝ)
16 mblsplit 24125 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
171, 7, 15, 16syl3anc 1366 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))))
18 simpl3 1188 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (𝐴𝐵) = ∅)
19 indir 4250 . . . . . . . . . 10 ((𝐴𝐵) ∩ 𝐴) = ((𝐴𝐴) ∪ (𝐵𝐴))
20 inidm 4193 . . . . . . . . . . . 12 (𝐴𝐴) = 𝐴
21 incom 4176 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
2220, 21uneq12i 4135 . . . . . . . . . . 11 ((𝐴𝐴) ∪ (𝐵𝐴)) = (𝐴 ∪ (𝐴𝐵))
23 unabs 4229 . . . . . . . . . . 11 (𝐴 ∪ (𝐴𝐵)) = 𝐴
2422, 23eqtri 2842 . . . . . . . . . 10 ((𝐴𝐴) ∪ (𝐵𝐴)) = 𝐴
2519, 24eqtri 2842 . . . . . . . . 9 ((𝐴𝐵) ∩ 𝐴) = 𝐴
2625a1i 11 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∩ 𝐴) = 𝐴)
2726fveq2d 6667 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∩ 𝐴)) = (vol*‘𝐴))
2821eqeq1i 2824 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ (𝐴𝐵) = ∅)
29 disj3 4401 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
3028, 29sylbb1 239 . . . . . . . . 9 ((𝐴𝐵) = ∅ → 𝐵 = (𝐵𝐴))
31 uncom 4127 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
3231difeq1i 4093 . . . . . . . . . 10 ((𝐴𝐵) ∖ 𝐴) = ((𝐵𝐴) ∖ 𝐴)
33 difun2 4427 . . . . . . . . . 10 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
3432, 33eqtri 2842 . . . . . . . . 9 ((𝐴𝐵) ∖ 𝐴) = (𝐵𝐴)
3530, 34syl6reqr 2873 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐴) = 𝐵)
3635fveq2d 6667 . . . . . . 7 ((𝐴𝐵) = ∅ → (vol*‘((𝐴𝐵) ∖ 𝐴)) = (vol*‘𝐵))
3727, 36oveq12d 7166 . . . . . 6 ((𝐴𝐵) = ∅ → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3818, 37syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘((𝐴𝐵) ∩ 𝐴)) + (vol*‘((𝐴𝐵) ∖ 𝐴))) = ((vol*‘𝐴) + (vol*‘𝐵)))
3917, 38eqtrd 2854 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
4039ex 415 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
41 mblvol 24123 . . . . . 6 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
4241eleq1d 2895 . . . . 5 (𝐴 ∈ dom vol → ((vol‘𝐴) ∈ ℝ ↔ (vol*‘𝐴) ∈ ℝ))
43 mblvol 24123 . . . . . 6 (𝐵 ∈ dom vol → (vol‘𝐵) = (vol*‘𝐵))
4443eleq1d 2895 . . . . 5 (𝐵 ∈ dom vol → ((vol‘𝐵) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
4542, 44bi2anan9 637 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
46453adant3 1127 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) ↔ ((vol*‘𝐴) ∈ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
47 unmbl 24130 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴𝐵) ∈ dom vol)
48 mblvol 24123 . . . . . 6 ((𝐴𝐵) ∈ dom vol → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
4947, 48syl 17 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (vol‘(𝐴𝐵)) = (vol*‘(𝐴𝐵)))
5041, 43oveqan12d 7167 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵)))
5149, 50eqeq12d 2835 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
52513adant3 1127 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → ((vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)) ↔ (vol*‘(𝐴𝐵)) = ((vol*‘𝐴) + (vol*‘𝐵))))
5340, 46, 523imtr4d 296 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) → (((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵))))
5453imp 409 1 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴𝐵)) = ((vol‘𝐴) + (vol‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  cdif 3931  cun 3932  cin 3933  wss 3934  c0 4289   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7148  cr 10528   + caddc 10532  cle 10668  vol*covol 24055  volcvol 24056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fl 13154  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-ovol 24057  df-vol 24058
This theorem is referenced by:  volinun  24139  volfiniun  24140  volsup  24149  ovolioo  24161  ismblfin  34925  volioc  42246  volico  42258
  Copyright terms: Public domain W3C validator