| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4161 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4133 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2740 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∪ cun 3924 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 |
| This theorem is referenced by: unabs 4240 undifr 4458 tppreqb 4781 pwssun 5545 cnvimassrndm 6141 relresfld 6265 ordssun 6456 ordequn 6457 onunel 6459 onun2 6462 oneluni 6473 fsnunf 7177 sorpssun 7724 ordunpr 7820 omun 7883 fodomr 9142 unfi 9185 enp1ilem 9284 pwfilem 9328 fodomfir 9340 brwdom2 9587 sucprcreg 9615 dfacfin7 10413 hashbclem 14470 incexclem 15852 ramub1lem1 17046 ramub1lem2 17047 mreexmrid 17655 lspun0 20968 lbsextlem4 21122 cldlp 23088 ordtuni 23128 lfinun 23463 cldsubg 24049 trust 24168 nulmbl2 25489 limcmpt2 25837 cnplimc 25840 dvreslem 25862 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 lhop 25973 plypf1 26169 coeeulem 26181 coeeu 26182 coef2 26188 rlimcnp 26927 noetalem1 27705 addsproplem2 27929 ex-un 30405 shs0i 31430 chj0i 31436 disjun0 32576 ffsrn 32706 difioo 32759 symgcom2 33095 eulerpartlemt 34403 fineqvac 35128 subfacp1lem1 35201 cvmscld 35295 mthmpps 35604 refssfne 36376 topjoin 36383 pibt2 37435 poimirlem3 37647 poimirlem28 37672 rntrclfvOAI 42714 istopclsd 42723 nacsfix 42735 diophrw 42782 tfsconcatb0 43368 onsucunipr 43396 oaun3 43406 clcnvlem 43647 cnvrcl0 43649 dmtrcl 43651 rntrcl 43652 iunrelexp0 43726 dmtrclfvRP 43754 rntrclfv 43756 cotrclrcl 43766 clsk3nimkb 44064 limciccioolb 45650 limcicciooub 45666 ioccncflimc 45914 icocncflimc 45918 stoweidlem44 46073 dirkercncflem3 46134 fourierdlem62 46197 ismeannd 46496 cycl3grtri 47959 |
| Copyright terms: Public domain | W3C validator |