| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4135 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4107 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2738 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: unabs 4214 undifr 4432 tppreqb 4756 pwssun 5511 cnvimassrndm 6104 relresfld 6228 ordssun 6415 ordequn 6416 onunel 6418 onun2 6421 oneluni 6431 fsnunf 7125 sorpssun 7669 ordunpr 7762 omun 7824 fodomr 9048 unfi 9087 enp1ilem 9169 pwfilem 9209 fodomfir 9219 brwdom2 9466 sucprcreg 9497 dfacfin7 10297 hashbclem 14361 incexclem 15745 ramub1lem1 16940 ramub1lem2 16941 mreexmrid 17551 lspun0 20946 lbsextlem4 21100 cldlp 23066 ordtuni 23106 lfinun 23441 cldsubg 24027 trust 24145 nulmbl2 25465 limcmpt2 25813 cnplimc 25816 dvreslem 25838 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 lhop 25949 plypf1 26145 coeeulem 26157 coeeu 26158 coef2 26164 rlimcnp 26903 noetalem1 27681 addsproplem2 27914 ex-un 30406 shs0i 31431 chj0i 31437 disjun0 32577 ffsrn 32715 difioo 32769 symgcom2 33060 eulerpartlemt 34405 fineqvac 35160 subfacp1lem1 35244 cvmscld 35338 mthmpps 35647 refssfne 36423 topjoin 36430 pibt2 37482 poimirlem3 37683 poimirlem28 37708 rntrclfvOAI 42808 istopclsd 42817 nacsfix 42829 diophrw 42876 tfsconcatb0 43461 onsucunipr 43489 oaun3 43499 clcnvlem 43740 cnvrcl0 43742 dmtrcl 43744 rntrcl 43745 iunrelexp0 43819 dmtrclfvRP 43847 rntrclfv 43849 cotrclrcl 43859 clsk3nimkb 44157 limciccioolb 45745 limcicciooub 45759 ioccncflimc 46007 icocncflimc 46011 stoweidlem44 46166 dirkercncflem3 46227 fourierdlem62 46290 ismeannd 46589 cycl3grtri 48071 |
| Copyright terms: Public domain | W3C validator |