| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4139 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4111 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 |
| This theorem is referenced by: unabs 4218 undifr 4436 tppreqb 4759 pwssun 5515 cnvimassrndm 6105 relresfld 6228 ordssun 6415 ordequn 6416 onunel 6418 onun2 6421 oneluni 6431 fsnunf 7125 sorpssun 7670 ordunpr 7765 omun 7828 fodomr 9052 unfi 9095 enp1ilem 9181 pwfilem 9225 fodomfir 9237 brwdom2 9484 sucprcreg 9515 dfacfin7 10312 hashbclem 14377 incexclem 15761 ramub1lem1 16956 ramub1lem2 16957 mreexmrid 17567 lspun0 20932 lbsextlem4 21086 cldlp 23053 ordtuni 23093 lfinun 23428 cldsubg 24014 trust 24133 nulmbl2 25453 limcmpt2 25801 cnplimc 25804 dvreslem 25826 dvaddbr 25856 dvmulbr 25857 dvmulbrOLD 25858 lhop 25937 plypf1 26133 coeeulem 26145 coeeu 26146 coef2 26152 rlimcnp 26891 noetalem1 27669 addsproplem2 27900 ex-un 30386 shs0i 31411 chj0i 31417 disjun0 32557 ffsrn 32685 difioo 32738 symgcom2 33039 eulerpartlemt 34338 fineqvac 35071 subfacp1lem1 35151 cvmscld 35245 mthmpps 35554 refssfne 36331 topjoin 36338 pibt2 37390 poimirlem3 37602 poimirlem28 37627 rntrclfvOAI 42664 istopclsd 42673 nacsfix 42685 diophrw 42732 tfsconcatb0 43317 onsucunipr 43345 oaun3 43355 clcnvlem 43596 cnvrcl0 43598 dmtrcl 43600 rntrcl 43601 iunrelexp0 43675 dmtrclfvRP 43703 rntrclfv 43705 cotrclrcl 43715 clsk3nimkb 44013 limciccioolb 45603 limcicciooub 45619 ioccncflimc 45867 icocncflimc 45871 stoweidlem44 46026 dirkercncflem3 46087 fourierdlem62 46150 ismeannd 46449 cycl3grtri 47932 |
| Copyright terms: Public domain | W3C validator |