| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4149 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4121 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: unabs 4228 undifr 4446 tppreqb 4769 pwssun 5530 cnvimassrndm 6125 relresfld 6249 ordssun 6436 ordequn 6437 onunel 6439 onun2 6442 oneluni 6453 fsnunf 7159 sorpssun 7706 ordunpr 7801 omun 7864 fodomr 9092 unfi 9135 enp1ilem 9223 pwfilem 9267 fodomfir 9279 brwdom2 9526 sucprcreg 9554 dfacfin7 10352 hashbclem 14417 incexclem 15802 ramub1lem1 16997 ramub1lem2 16998 mreexmrid 17604 lspun0 20917 lbsextlem4 21071 cldlp 23037 ordtuni 23077 lfinun 23412 cldsubg 23998 trust 24117 nulmbl2 25437 limcmpt2 25785 cnplimc 25788 dvreslem 25810 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 lhop 25921 plypf1 26117 coeeulem 26129 coeeu 26130 coef2 26136 rlimcnp 26875 noetalem1 27653 addsproplem2 27877 ex-un 30353 shs0i 31378 chj0i 31384 disjun0 32524 ffsrn 32652 difioo 32705 symgcom2 33041 eulerpartlemt 34362 fineqvac 35087 subfacp1lem1 35166 cvmscld 35260 mthmpps 35569 refssfne 36346 topjoin 36353 pibt2 37405 poimirlem3 37617 poimirlem28 37642 rntrclfvOAI 42679 istopclsd 42688 nacsfix 42700 diophrw 42747 tfsconcatb0 43333 onsucunipr 43361 oaun3 43371 clcnvlem 43612 cnvrcl0 43614 dmtrcl 43616 rntrcl 43617 iunrelexp0 43691 dmtrclfvRP 43719 rntrclfv 43721 cotrclrcl 43731 clsk3nimkb 44029 limciccioolb 45619 limcicciooub 45635 ioccncflimc 45883 icocncflimc 45887 stoweidlem44 46042 dirkercncflem3 46103 fourierdlem62 46166 ismeannd 46465 cycl3grtri 47946 |
| Copyright terms: Public domain | W3C validator |