![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4010 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 3984 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2830 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 267 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 ∪ cun 3796 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-un 3803 df-in 3805 df-ss 3812 |
This theorem is referenced by: unabs 4084 tppreqb 4554 pwssun 5246 pwundif 5247 relresfld 5903 ordssun 6062 ordequn 6063 oneluni 6075 fsnunf 6707 sorpssun 7204 ordunpr 7287 fodomr 8380 enp1ilem 8463 pwfilem 8529 brwdom2 8747 sucprcreg 8775 dfacfin7 9536 hashbclem 13525 incexclem 14942 ramub1lem1 16101 ramub1lem2 16102 mreexmrid 16656 lspun0 19370 lbsextlem4 19522 cldlp 21325 ordtuni 21365 lfinun 21699 cldsubg 22284 trust 22403 nulmbl2 23702 limcmpt2 24047 cnplimc 24050 dvreslem 24072 dvaddbr 24100 dvmulbr 24101 lhop 24178 plypf1 24367 coeeulem 24379 coeeu 24380 coef2 24386 rlimcnp 25105 ex-un 27839 shs0i 28863 chj0i 28869 disjun0 29955 ffsrn 30052 difioo 30091 eulerpartlemt 30978 subfacp1lem1 31707 cvmscld 31801 mthmpps 32025 refssfne 32891 topjoin 32898 poimirlem3 33956 poimirlem28 33981 rntrclfvOAI 38098 istopclsd 38107 nacsfix 38119 diophrw 38166 clcnvlem 38771 cnvrcl0 38773 dmtrcl 38775 rntrcl 38776 iunrelexp0 38835 dmtrclfvRP 38863 rntrclfv 38865 cotrclrcl 38875 clsk3nimkb 39178 limciccioolb 40648 limcicciooub 40664 ioccncflimc 40893 icocncflimc 40897 stoweidlem44 41055 dirkercncflem3 41116 fourierdlem62 41179 ismeannd 41475 |
Copyright terms: Public domain | W3C validator |