![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4209 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 4181 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2745 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: unabs 4284 undifr 4506 tppreqb 4830 pwssun 5590 cnvimassrndm 6183 relresfld 6307 ordssun 6497 ordequn 6498 onunel 6500 onun2 6503 oneluni 6514 fsnunf 7219 sorpssun 7765 ordunpr 7862 omun 7926 fodomr 9194 unfi 9238 enp1ilem 9340 pwfilem 9384 fodomfir 9396 pwfilemOLD 9416 brwdom2 9642 sucprcreg 9670 dfacfin7 10468 hashbclem 14501 incexclem 15884 ramub1lem1 17073 ramub1lem2 17074 mreexmrid 17701 lspun0 21032 lbsextlem4 21186 cldlp 23179 ordtuni 23219 lfinun 23554 cldsubg 24140 trust 24259 nulmbl2 25590 limcmpt2 25939 cnplimc 25942 dvreslem 25964 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 lhop 26075 plypf1 26271 coeeulem 26283 coeeu 26284 coef2 26290 rlimcnp 27026 noetalem1 27804 addsproplem2 28021 ex-un 30456 shs0i 31481 chj0i 31487 disjun0 32617 ffsrn 32743 difioo 32787 symgcom2 33077 eulerpartlemt 34336 fineqvac 35073 subfacp1lem1 35147 cvmscld 35241 mthmpps 35550 refssfne 36324 topjoin 36331 pibt2 37383 poimirlem3 37583 poimirlem28 37608 rntrclfvOAI 42647 istopclsd 42656 nacsfix 42668 diophrw 42715 tfsconcatb0 43306 onsucunipr 43334 oaun3 43344 clcnvlem 43585 cnvrcl0 43587 dmtrcl 43589 rntrcl 43590 iunrelexp0 43664 dmtrclfvRP 43692 rntrclfv 43694 cotrclrcl 43704 clsk3nimkb 44002 limciccioolb 45542 limcicciooub 45558 ioccncflimc 45806 icocncflimc 45810 stoweidlem44 45965 dirkercncflem3 46026 fourierdlem62 46089 ismeannd 46388 |
Copyright terms: Public domain | W3C validator |