Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4110 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 4083 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2743 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: unabs 4185 tppreqb 4735 pwssun 5476 pwundifOLD 5477 cnvimassrndm 6044 relresfld 6168 ordssun 6350 ordequn 6351 onun2 6355 oneluni 6364 fsnunf 7039 sorpssun 7561 ordunpr 7648 fodomr 8864 unfi 8917 pwfilem 8922 enp1ilem 8981 pwfilemOLD 9043 brwdom2 9262 sucprcreg 9290 dfacfin7 10086 hashbclem 14092 incexclem 15476 ramub1lem1 16655 ramub1lem2 16656 mreexmrid 17269 lspun0 20188 lbsextlem4 20338 cldlp 22209 ordtuni 22249 lfinun 22584 cldsubg 23170 trust 23289 nulmbl2 24605 limcmpt2 24953 cnplimc 24956 dvreslem 24978 dvaddbr 25007 dvmulbr 25008 lhop 25085 plypf1 25278 coeeulem 25290 coeeu 25291 coef2 25297 rlimcnp 26020 ex-un 28689 shs0i 29712 chj0i 29718 disjun0 30835 ffsrn 30966 difioo 31005 symgcom2 31255 eulerpartlemt 32238 fineqvac 32966 subfacp1lem1 33041 cvmscld 33135 mthmpps 33444 onunel 33592 noetalem1 33871 refssfne 34474 topjoin 34481 pibt2 35515 poimirlem3 35707 poimirlem28 35732 rntrclfvOAI 40429 istopclsd 40438 nacsfix 40450 diophrw 40497 clcnvlem 41120 cnvrcl0 41122 dmtrcl 41124 rntrcl 41125 iunrelexp0 41199 dmtrclfvRP 41227 rntrclfv 41229 cotrclrcl 41239 clsk3nimkb 41539 limciccioolb 43052 limcicciooub 43068 ioccncflimc 43316 icocncflimc 43320 stoweidlem44 43475 dirkercncflem3 43536 fourierdlem62 43599 ismeannd 43895 |
Copyright terms: Public domain | W3C validator |