| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4152 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4124 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2735 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 |
| This theorem is referenced by: unabs 4231 undifr 4449 tppreqb 4772 pwssun 5533 cnvimassrndm 6128 relresfld 6252 ordssun 6439 ordequn 6440 onunel 6442 onun2 6445 oneluni 6456 fsnunf 7162 sorpssun 7709 ordunpr 7804 omun 7867 fodomr 9098 unfi 9141 enp1ilem 9230 pwfilem 9274 fodomfir 9286 brwdom2 9533 sucprcreg 9561 dfacfin7 10359 hashbclem 14424 incexclem 15809 ramub1lem1 17004 ramub1lem2 17005 mreexmrid 17611 lspun0 20924 lbsextlem4 21078 cldlp 23044 ordtuni 23084 lfinun 23419 cldsubg 24005 trust 24124 nulmbl2 25444 limcmpt2 25792 cnplimc 25795 dvreslem 25817 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 lhop 25928 plypf1 26124 coeeulem 26136 coeeu 26137 coef2 26143 rlimcnp 26882 noetalem1 27660 addsproplem2 27884 ex-un 30360 shs0i 31385 chj0i 31391 disjun0 32531 ffsrn 32659 difioo 32712 symgcom2 33048 eulerpartlemt 34369 fineqvac 35094 subfacp1lem1 35173 cvmscld 35267 mthmpps 35576 refssfne 36353 topjoin 36360 pibt2 37412 poimirlem3 37624 poimirlem28 37649 rntrclfvOAI 42686 istopclsd 42695 nacsfix 42707 diophrw 42754 tfsconcatb0 43340 onsucunipr 43368 oaun3 43378 clcnvlem 43619 cnvrcl0 43621 dmtrcl 43623 rntrcl 43624 iunrelexp0 43698 dmtrclfvRP 43726 rntrclfv 43728 cotrclrcl 43738 clsk3nimkb 44036 limciccioolb 45626 limcicciooub 45642 ioccncflimc 45890 icocncflimc 45894 stoweidlem44 46049 dirkercncflem3 46110 fourierdlem62 46173 ismeannd 46472 cycl3grtri 47950 |
| Copyright terms: Public domain | W3C validator |