Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4087 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 4060 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2763 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∪ cun 3858 ⊆ wss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 |
This theorem is referenced by: unabs 4161 tppreqb 4698 pwssun 5429 pwundifOLD 5430 relresfld 6109 ordssun 6272 ordequn 6273 onun2 6277 oneluni 6286 fsnunf 6943 sorpssun 7459 ordunpr 7545 fodomr 8695 unfi 8746 pwfilem 8750 enp1ilem 8793 pwfilemOLD 8856 brwdom2 9075 sucprcreg 9103 dfacfin7 9864 hashbclem 13865 incexclem 15244 ramub1lem1 16422 ramub1lem2 16423 mreexmrid 16977 lspun0 19856 lbsextlem4 20006 cldlp 21855 ordtuni 21895 lfinun 22230 cldsubg 22816 trust 22935 nulmbl2 24241 limcmpt2 24588 cnplimc 24591 dvreslem 24613 dvaddbr 24642 dvmulbr 24643 lhop 24720 plypf1 24913 coeeulem 24925 coeeu 24926 coef2 24932 rlimcnp 25655 ex-un 28313 shs0i 29336 chj0i 29342 disjun0 30461 ffsrn 30592 difioo 30631 symgcom2 30883 eulerpartlemt 31861 subfacp1lem1 32661 cvmscld 32755 mthmpps 33064 noetalem1 33533 refssfne 34122 topjoin 34129 pibt2 35140 poimirlem3 35366 poimirlem28 35391 rntrclfvOAI 40033 istopclsd 40042 nacsfix 40054 diophrw 40101 clcnvlem 40724 cnvrcl0 40726 dmtrcl 40728 rntrcl 40729 iunrelexp0 40804 dmtrclfvRP 40832 rntrclfv 40834 cotrclrcl 40844 clsk3nimkb 41144 limciccioolb 42657 limcicciooub 42673 ioccncflimc 42921 icocncflimc 42925 stoweidlem44 43080 dirkercncflem3 43141 fourierdlem62 43204 ismeannd 43500 |
Copyright terms: Public domain | W3C validator |