| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4136 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | uncom 4108 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2736 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: unabs 4215 undifr 4433 tppreqb 4757 pwssun 5508 cnvimassrndm 6099 relresfld 6223 ordssun 6410 ordequn 6411 onunel 6413 onun2 6416 oneluni 6426 fsnunf 7119 sorpssun 7663 ordunpr 7756 omun 7818 fodomr 9041 unfi 9080 enp1ilem 9162 pwfilem 9202 fodomfir 9212 brwdom2 9459 sucprcreg 9490 dfacfin7 10287 hashbclem 14356 incexclem 15740 ramub1lem1 16935 ramub1lem2 16936 mreexmrid 17546 lspun0 20942 lbsextlem4 21096 cldlp 23063 ordtuni 23103 lfinun 23438 cldsubg 24024 trust 24142 nulmbl2 25462 limcmpt2 25810 cnplimc 25813 dvreslem 25835 dvaddbr 25865 dvmulbr 25866 dvmulbrOLD 25867 lhop 25946 plypf1 26142 coeeulem 26154 coeeu 26155 coef2 26161 rlimcnp 26900 noetalem1 27678 addsproplem2 27911 ex-un 30399 shs0i 31424 chj0i 31430 disjun0 32570 ffsrn 32706 difioo 32760 symgcom2 33048 eulerpartlemt 34379 fineqvac 35127 subfacp1lem1 35211 cvmscld 35305 mthmpps 35614 refssfne 36391 topjoin 36398 pibt2 37450 poimirlem3 37662 poimirlem28 37687 rntrclfvOAI 42723 istopclsd 42732 nacsfix 42744 diophrw 42791 tfsconcatb0 43376 onsucunipr 43404 oaun3 43414 clcnvlem 43655 cnvrcl0 43657 dmtrcl 43659 rntrcl 43660 iunrelexp0 43734 dmtrclfvRP 43762 rntrclfv 43764 cotrclrcl 43774 clsk3nimkb 44072 limciccioolb 45660 limcicciooub 45674 ioccncflimc 45922 icocncflimc 45926 stoweidlem44 46081 dirkercncflem3 46142 fourierdlem62 46205 ismeannd 46504 cycl3grtri 47977 |
| Copyright terms: Public domain | W3C validator |