Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4115 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 4088 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2744 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∪ cun 3886 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-un 3893 df-in 3895 df-ss 3905 |
This theorem is referenced by: unabs 4189 tppreqb 4739 pwssun 5486 pwundifOLD 5487 cnvimassrndm 6060 relresfld 6183 ordssun 6369 ordequn 6370 onun2 6374 oneluni 6383 fsnunf 7066 sorpssun 7592 ordunpr 7682 fodomr 8924 unfi 8964 pwfilem 8969 enp1ilem 9060 pwfilemOLD 9122 brwdom2 9341 sucprcreg 9369 dfacfin7 10164 hashbclem 14173 incexclem 15557 ramub1lem1 16736 ramub1lem2 16737 mreexmrid 17361 lspun0 20282 lbsextlem4 20432 cldlp 22310 ordtuni 22350 lfinun 22685 cldsubg 23271 trust 23390 nulmbl2 24709 limcmpt2 25057 cnplimc 25060 dvreslem 25082 dvaddbr 25111 dvmulbr 25112 lhop 25189 plypf1 25382 coeeulem 25394 coeeu 25395 coef2 25401 rlimcnp 26124 ex-un 28797 shs0i 29820 chj0i 29826 disjun0 30943 ffsrn 31073 difioo 31112 symgcom2 31362 eulerpartlemt 32347 fineqvac 33075 subfacp1lem1 33150 cvmscld 33244 mthmpps 33553 onunel 33698 noetalem1 33953 refssfne 34556 topjoin 34563 pibt2 35597 poimirlem3 35789 poimirlem28 35814 rntrclfvOAI 40520 istopclsd 40529 nacsfix 40541 diophrw 40588 clcnvlem 41238 cnvrcl0 41240 dmtrcl 41242 rntrcl 41243 iunrelexp0 41317 dmtrclfvRP 41345 rntrclfv 41347 cotrclrcl 41357 clsk3nimkb 41657 limciccioolb 43169 limcicciooub 43185 ioccncflimc 43433 icocncflimc 43437 stoweidlem44 43592 dirkercncflem3 43653 fourierdlem62 43716 ismeannd 44012 |
Copyright terms: Public domain | W3C validator |