MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif2 Structured version   Visualization version   GIF version

Theorem difdif2 4085
Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.)
Assertion
Ref Expression
difdif2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem difdif2
StepHypRef Expression
1 difindi 4082 . 2 (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))
2 invdif 4069 . . . 4 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
32eqcomi 2808 . . 3 (𝐵𝐶) = (𝐵 ∩ (V ∖ 𝐶))
43difeq2i 3923 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶)))
5 dfin2 4061 . . 3 (𝐴𝐶) = (𝐴 ∖ (V ∖ 𝐶))
65uneq2i 3962 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))
71, 4, 63eqtr4i 2831 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  Vcvv 3385  cdif 3766  cun 3767  cin 3768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776
This theorem is referenced by:  restmetu  22703  difelcarsg  30888  mblfinlem3  33937  mblfinlem4  33938
  Copyright terms: Public domain W3C validator