| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difdif2 | Structured version Visualization version GIF version | ||
| Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| difdif2 | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difindi 4258 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) | |
| 2 | invdif 4245 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) |
| 4 | 3 | difeq2i 4089 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
| 5 | dfin2 4237 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∖ (V ∖ 𝐶)) | |
| 6 | 5 | uneq2i 4131 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) |
| 7 | 1, 4, 6 | 3eqtr4i 2763 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 |
| This theorem is referenced by: psdmullem 22059 restmetu 24465 difelcarsg 34308 mblfinlem3 37660 mblfinlem4 37661 |
| Copyright terms: Public domain | W3C validator |