MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difdif2 Structured version   Visualization version   GIF version

Theorem difdif2 4262
Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.)
Assertion
Ref Expression
difdif2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem difdif2
StepHypRef Expression
1 difindi 4258 . 2 (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))
2 invdif 4245 . . . 4 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
32eqcomi 2739 . . 3 (𝐵𝐶) = (𝐵 ∩ (V ∖ 𝐶))
43difeq2i 4089 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶)))
5 dfin2 4237 . . 3 (𝐴𝐶) = (𝐴 ∖ (V ∖ 𝐶))
65uneq2i 4131 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))
71, 4, 63eqtr4i 2763 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cdif 3914  cun 3915  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924
This theorem is referenced by:  psdmullem  22059  restmetu  24465  difelcarsg  34308  mblfinlem3  37660  mblfinlem4  37661
  Copyright terms: Public domain W3C validator