MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundi Structured version   Visualization version   GIF version

Theorem difundi 4265
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem difundi
StepHypRef Expression
1 dfun3 4251 . . 3 (𝐵𝐶) = (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
21difeq2i 4098 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
3 inindi 4210 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶)))
4 dfin2 4246 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
5 invdif 4254 . . . 4 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
6 invdif 4254 . . . 4 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
75, 6ineq12i 4193 . . 3 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴𝐶))
83, 4, 73eqtr3i 2766 . 2 (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ (𝐴𝐶))
92, 8eqtri 2758 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3459  cdif 3923  cun 3924  cin 3925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933
This theorem is referenced by:  undm  4272  uncld  22979  inmbl  25495  difuncomp  32534  clsun  36346  poimirlem8  37652  ntrclskb  44093  ntrclsk3  44094  ntrclsk13  44095
  Copyright terms: Public domain W3C validator