![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difundi | Structured version Visualization version GIF version |
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difundi | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun3 4295 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
2 | 1 | difeq2i 4146 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) |
3 | inindi 4256 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) | |
4 | dfin2 4290 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) | |
5 | invdif 4298 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
6 | invdif 4298 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
7 | 5, 6 | ineq12i 4239 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
8 | 3, 4, 7 | 3eqtr3i 2776 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
9 | 2, 8 | eqtri 2768 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 |
This theorem is referenced by: undm 4316 uncld 23070 inmbl 25596 difuncomp 32576 clsun 36294 poimirlem8 37588 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 |
Copyright terms: Public domain | W3C validator |