| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundi | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundi | ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun3 4227 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) | |
| 2 | 1 | difeq2i 4074 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) |
| 3 | inindi 4186 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) | |
| 4 | dfin2 4222 | . . 3 ⊢ (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) | |
| 5 | invdif 4230 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 6 | invdif 4230 | . . . 4 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 7 | 5, 6 | ineq12i 4169 | . . 3 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
| 8 | 3, 4, 7 | 3eqtr3i 2760 | . 2 ⊢ (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
| 9 | 2, 8 | eqtri 2752 | 1 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 |
| This theorem is referenced by: undm 4248 uncld 22926 inmbl 25441 difuncomp 32497 clsun 36306 poimirlem8 37612 ntrclskb 44046 ntrclsk3 44047 ntrclsk13 44048 |
| Copyright terms: Public domain | W3C validator |