Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq1i | Structured version Visualization version GIF version |
Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq1i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq1 4086 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: un12 4097 unundi 4100 undif1 4406 dfif5 4472 tpcoma 4683 qdass 4686 qdassr 4687 tpidm12 4688 symdifv 5011 unidif0 5277 cnvimassrndm 6044 difxp2 6058 resasplit 6628 fresaun 6629 fresaunres2 6630 f1ofvswap 7158 df2o3 8282 sbthlem6 8828 fodomr 8864 domss2 8872 domunfican 9017 dftrpred4g 9413 kmlem11 9847 hashfun 14080 prmreclem2 16546 setscom 16809 gsummptfzsplitl 19449 uniioombllem3 24654 lhop 25085 ex-un 28689 ex-pw 28694 indifundif 30774 cycpmrn 31312 bnj1415 32918 subfacp1lem1 33041 sltlpss 34014 lineunray 34376 bj-2upln1upl 35141 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 metakunt24 40076 dfrcl2 41171 iunrelexp0 41199 trclfvdecomr 41225 corcltrcl 41236 cotrclrcl 41239 df3o2 41523 fourierdlem80 43617 caragenuncllem 43940 carageniuncllem1 43949 1fzopredsuc 44704 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 lmod1 45721 iscnrm3rlem1 46122 |
Copyright terms: Public domain | W3C validator |