Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq1i | Structured version Visualization version GIF version |
Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq1i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq1 4090 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: un12 4101 unundi 4104 undif1 4409 dfif5 4475 tpcoma 4686 qdass 4689 qdassr 4690 tpidm12 4691 symdifv 5015 unidif0 5282 cnvimassrndm 6055 difxp2 6069 resasplit 6644 fresaun 6645 fresaunres2 6646 f1ofvswap 7178 df2o3 8305 sbthlem6 8875 fodomr 8915 domss2 8923 domunfican 9087 kmlem11 9916 hashfun 14152 prmreclem2 16618 setscom 16881 gsummptfzsplitl 19534 uniioombllem3 24749 lhop 25180 ex-un 28788 ex-pw 28793 indifundif 30873 cycpmrn 31410 bnj1415 33018 subfacp1lem1 33141 sltlpss 34087 lineunray 34449 bj-2upln1upl 35214 poimirlem3 35780 poimirlem4 35781 poimirlem5 35782 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem22 35799 metakunt24 40148 dfrcl2 41282 iunrelexp0 41310 trclfvdecomr 41336 corcltrcl 41347 cotrclrcl 41350 df3o2 41634 fourierdlem80 43727 caragenuncllem 44050 carageniuncllem1 44059 1fzopredsuc 44816 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 lmod1 45833 iscnrm3rlem1 46234 |
Copyright terms: Public domain | W3C validator |