Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq1i | Structured version Visualization version GIF version |
Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq1i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq1 4095 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 |
This theorem is referenced by: un12 4106 unundi 4109 undif1 4415 dfif5 4481 tpcoma 4692 qdass 4695 qdassr 4696 tpidm12 4697 symdifv 5020 unidif0 5286 cnvimassrndm 6053 difxp2 6067 resasplit 6641 fresaun 6642 fresaunres2 6643 f1ofvswap 7172 df2o3 8294 sbthlem6 8855 fodomr 8895 domss2 8903 domunfican 9063 dftrpred4g 9480 kmlem11 9915 hashfun 14148 prmreclem2 16614 setscom 16877 gsummptfzsplitl 19530 uniioombllem3 24745 lhop 25176 ex-un 28782 ex-pw 28787 indifundif 30867 cycpmrn 31404 bnj1415 33012 subfacp1lem1 33135 sltlpss 34081 lineunray 34443 bj-2upln1upl 35208 poimirlem3 35774 poimirlem4 35775 poimirlem5 35776 poimirlem16 35787 poimirlem17 35788 poimirlem19 35790 poimirlem20 35791 poimirlem22 35793 metakunt24 40143 dfrcl2 41250 iunrelexp0 41278 trclfvdecomr 41304 corcltrcl 41315 cotrclrcl 41318 df3o2 41602 fourierdlem80 43696 caragenuncllem 44019 carageniuncllem1 44028 1fzopredsuc 44783 nnsum4primeseven 45219 nnsum4primesevenALTV 45220 lmod1 45800 iscnrm3rlem1 46201 |
Copyright terms: Public domain | W3C validator |