| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordisword | Structured version Visualization version GIF version | ||
| Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| upwordisword | ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆)) | |
| 2 | df-upword 46870 | . . . 4 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
| 3 | 2 | eqabri 2872 | . . 3 ⊢ (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝑤 ∈ UpWord 𝑆 → 𝑤 ∈ Word 𝑆) |
| 5 | 1, 4 | vtoclga 3546 | 1 ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 < clt 11214 − cmin 11411 ..^cfzo 13621 ♯chash 14301 Word cword 14484 UpWord cupword 46869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-upword 46870 |
| This theorem is referenced by: singoutnupword 46874 upwordsseti 46876 upwrdfi 46878 |
| Copyright terms: Public domain | W3C validator |