Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordisword Structured version   Visualization version   GIF version

Theorem upwordisword 46239
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordisword (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)

Proof of Theorem upwordisword
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆))
2 df-upword 46237 . . . 4 UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
32eqabri 2872 . . 3 (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
43simplbi 497 . 2 (𝑤 ∈ UpWord 𝑆𝑤 ∈ Word 𝑆)
51, 4vtoclga 3561 1 (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wral 3056   class class class wbr 5142  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133   + caddc 11135   < clt 11272  cmin 11468  ..^cfzo 13653  chash 14315  Word cword 14490  UpWord cupword 46236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-upword 46237
This theorem is referenced by:  singoutnupword  46241  upwordsseti  46243  upwrdfi  46245
  Copyright terms: Public domain W3C validator