| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordisword | Structured version Visualization version GIF version | ||
| Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| upwordisword | ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆)) | |
| 2 | df-upword 46851 | . . . 4 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
| 3 | 2 | eqabri 2877 | . . 3 ⊢ (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝑤 ∈ UpWord 𝑆 → 𝑤 ∈ Word 𝑆) |
| 5 | 1, 4 | vtoclga 3560 | 1 ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 − cmin 11474 ..^cfzo 13676 ♯chash 14351 Word cword 14534 UpWord cupword 46850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-upword 46851 |
| This theorem is referenced by: singoutnupword 46855 upwordsseti 46857 upwrdfi 46859 |
| Copyright terms: Public domain | W3C validator |