Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordisword | Structured version Visualization version GIF version |
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordisword | ⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2824 | . 2 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆)) | |
2 | df-upword 46572 | . . . 4 ⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
3 | 2 | abeq2i 2873 | . . 3 ⊢ (𝑤 ∈ UpWord𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
4 | 3 | simplbi 499 | . 2 ⊢ (𝑤 ∈ UpWord𝑆 → 𝑤 ∈ Word 𝑆) |
5 | 1, 4 | vtoclga 3518 | 1 ⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3062 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 < clt 11055 − cmin 11251 ..^cfzo 13428 ♯chash 14090 Word cword 14262 UpWordcupword 46571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-upword 46572 |
This theorem is referenced by: singoutnupword 46576 upwordsseti 46578 |
Copyright terms: Public domain | W3C validator |