Mathbox for Ender Ting |
< Previous
Wrap >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordisword | Structured version Visualization version GIF version |
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordisword | ⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2828 | . 2 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆)) | |
2 | df-upword 46472 | . . . 4 ⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
3 | 2 | abeq2i 2877 | . . 3 ⊢ (𝑤 ∈ UpWord𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
4 | 3 | simplbi 498 | . 2 ⊢ (𝑤 ∈ UpWord𝑆 → 𝑤 ∈ Word 𝑆) |
5 | 1, 4 | vtoclga 3512 | 1 ⊢ (𝐴 ∈ UpWord𝑆 → 𝐴 ∈ Word 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 0cc0 10864 1c1 10865 + caddc 10867 < clt 11002 − cmin 11197 ..^cfzo 13373 ♯chash 14034 Word cword 14207 UpWordcupword 46471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-upword 46472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |