Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordisword Structured version   Visualization version   GIF version

Theorem upwordisword 46852
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordisword (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)

Proof of Theorem upwordisword
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆))
2 df-upword 46850 . . . 4 UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
32eqabri 2871 . . 3 (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
43simplbi 497 . 2 (𝑤 ∈ UpWord 𝑆𝑤 ∈ Word 𝑆)
51, 4vtoclga 3540 1 (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  ..^cfzo 13591  chash 14271  Word cword 14454  UpWord cupword 46849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-upword 46850
This theorem is referenced by:  singoutnupword  46854  upwordsseti  46856  upwrdfi  46858
  Copyright terms: Public domain W3C validator