Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordisword Structured version   Visualization version   GIF version

Theorem upwordisword 46574
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordisword (𝐴 ∈ UpWord𝑆𝐴 ∈ Word 𝑆)

Proof of Theorem upwordisword
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2824 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆))
2 df-upword 46572 . . . 4 UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
32abeq2i 2873 . . 3 (𝑤 ∈ UpWord𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
43simplbi 499 . 2 (𝑤 ∈ UpWord𝑆𝑤 ∈ Word 𝑆)
51, 4vtoclga 3518 1 (𝐴 ∈ UpWord𝑆𝐴 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wral 3062   class class class wbr 5081  cfv 6458  (class class class)co 7307  0cc0 10917  1c1 10918   + caddc 10920   < clt 11055  cmin 11251  ..^cfzo 13428  chash 14090  Word cword 14262  UpWordcupword 46571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-upword 46572
This theorem is referenced by:  singoutnupword  46576  upwordsseti  46578
  Copyright terms: Public domain W3C validator