Users' Mathboxes Mathbox for Ender Ting < Previous   Wrap >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordisword Structured version   Visualization version   GIF version

Theorem upwordisword 46474
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordisword (𝐴 ∈ UpWord𝑆𝐴 ∈ Word 𝑆)

Proof of Theorem upwordisword
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2828 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆))
2 df-upword 46472 . . . 4 UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
32abeq2i 2877 . . 3 (𝑤 ∈ UpWord𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
43simplbi 498 . 2 (𝑤 ∈ UpWord𝑆𝑤 ∈ Word 𝑆)
51, 4vtoclga 3512 1 (𝐴 ∈ UpWord𝑆𝐴 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2110  wral 3066   class class class wbr 5079  cfv 6431  (class class class)co 7269  0cc0 10864  1c1 10865   + caddc 10867   < clt 11002  cmin 11197  ..^cfzo 13373  chash 14034  Word cword 14207  UpWordcupword 46471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-upword 46472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator