![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordisword | Structured version Visualization version GIF version |
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordisword | ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2816 | . 2 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆)) | |
2 | df-upword 46237 | . . . 4 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
3 | 2 | eqabri 2872 | . . 3 ⊢ (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝑤 ∈ UpWord 𝑆 → 𝑤 ∈ Word 𝑆) |
5 | 1, 4 | vtoclga 3561 | 1 ⊢ (𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 + caddc 11135 < clt 11272 − cmin 11468 ..^cfzo 13653 ♯chash 14315 Word cword 14490 UpWord cupword 46236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-upword 46237 |
This theorem is referenced by: singoutnupword 46241 upwordsseti 46243 upwrdfi 46245 |
Copyright terms: Public domain | W3C validator |