Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordisword Structured version   Visualization version   GIF version

Theorem upwordisword 45595
Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordisword (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)

Proof of Theorem upwordisword
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2822 . 2 (𝑤 = 𝐴 → (𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆))
2 df-upword 45593 . . . 4 UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
32eqabri 2878 . . 3 (𝑤 ∈ UpWord 𝑆 ↔ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
43simplbi 499 . 2 (𝑤 ∈ UpWord 𝑆𝑤 ∈ Word 𝑆)
51, 4vtoclga 3566 1 (𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wral 3062   class class class wbr 5149  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248  cmin 11444  ..^cfzo 13627  chash 14290  Word cword 14464  UpWord cupword 45592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-upword 45593
This theorem is referenced by:  singoutnupword  45597  upwordsseti  45599  upwrdfi  45601
  Copyright terms: Public domain W3C validator