Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordnul Structured version   Visualization version   GIF version

Theorem upwordnul 46861
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordnul ∅ ∈ UpWord 𝑆

Proof of Theorem upwordnul
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5246 . . . 4 ∅ ∈ V
2 elab6g 3624 . . . 4 (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))))
31, 2ax-mp 5 . . 3 (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))))
4 wrd0 14446 . . . . 5 ∅ ∈ Word 𝑆
5 eleq1a 2823 . . . . 5 (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆))
64, 5ax-mp 5 . . . 4 (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)
7 fveq2 6822 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
8 hash0 14274 . . . . . . . . 9 (♯‘∅) = 0
97, 8eqtrdi 2780 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = 0)
109oveq1d 7364 . . . . . . 7 (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1))
11 0red 11118 . . . . . . . 8 (𝑤 = ∅ → 0 ∈ ℝ)
1211lem1d 12058 . . . . . . 7 (𝑤 = ∅ → (0 − 1) ≤ 0)
1310, 12eqbrtrd 5114 . . . . . 6 (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0)
14 0z 12482 . . . . . . 7 0 ∈ ℤ
159, 14eqeltrdi 2836 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ)
16 1zzd 12506 . . . . . . . 8 (𝑤 = ∅ → 1 ∈ ℤ)
1715, 16zsubcld 12585 . . . . . . 7 (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ)
18 fzon 13583 . . . . . . 7 ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅))
1914, 17, 18sylancr 587 . . . . . 6 (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅))
2013, 19mpbid 232 . . . . 5 (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅)
21 rzal 4460 . . . . 5 ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
2220, 21syl 17 . . . 4 (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
236, 22jca 511 . . 3 (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
243, 23mpgbir 1799 . 2 ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
25 df-upword 46860 . 2 UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
2624, 25eleqtrri 2827 1 ∅ ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3436  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  cz 12471  ..^cfzo 13557  chash 14237  Word cword 14420  UpWord cupword 46859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-upword 46860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator