Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordnul | Structured version Visualization version GIF version |
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordnul | ⊢ ∅ ∈ UpWord𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5235 | . . . 4 ⊢ ∅ ∈ V | |
2 | elab6g 3602 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
4 | wrd0 14253 | . . . . 5 ⊢ ∅ ∈ Word 𝑆 | |
5 | eleq1a 2836 | . . . . 5 ⊢ (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 ∈ Word 𝑆) |
7 | fveq2 6771 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
8 | hash0 14093 | . . . . . . . . 9 ⊢ (♯‘∅) = 0 | |
9 | 7, 8 | eqtrdi 2796 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
10 | 9 | oveq1d 7287 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1)) |
11 | 0red 10989 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 0 ∈ ℝ) | |
12 | 11 | lem1d 11919 | . . . . . . 7 ⊢ (𝑤 = ∅ → (0 − 1) ≤ 0) |
13 | 10, 12 | eqbrtrd 5101 | . . . . . 6 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0) |
14 | 0z 12341 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
15 | 9, 14 | eqeltrdi 2849 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ) |
16 | 1zzd 12362 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 1 ∈ ℤ) | |
17 | 15, 16 | zsubcld 12442 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ) |
18 | fzon 13419 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) | |
19 | 14, 17, 18 | sylancr 587 | . . . . . 6 ⊢ (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) |
20 | 13, 19 | mpbid 231 | . . . . 5 ⊢ (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅) |
21 | rzal 4445 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
23 | 6, 22 | jca 512 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
24 | 3, 23 | mpgbir 1806 | . 2 ⊢ ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
25 | df-upword 46493 | . 2 ⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
26 | 24, 25 | eleqtrri 2840 | 1 ⊢ ∅ ∈ UpWord𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1540 = wceq 1542 ∈ wcel 2110 {cab 2717 ∀wral 3066 Vcvv 3431 ∅c0 4262 class class class wbr 5079 ‘cfv 6432 (class class class)co 7272 0cc0 10882 1c1 10883 + caddc 10885 < clt 11020 ≤ cle 11021 − cmin 11216 ℤcz 12330 ..^cfzo 13393 ♯chash 14055 Word cword 14228 UpWordcupword 46492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-n0 12245 df-z 12331 df-uz 12594 df-fz 13251 df-fzo 13394 df-hash 14056 df-word 14229 df-upword 46493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |