Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordnul | Structured version Visualization version GIF version |
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordnul | ⊢ ∅ ∈ UpWord𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5235 | . . . 4 ⊢ ∅ ∈ V | |
2 | elab6g 3602 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
4 | wrd0 14232 | . . . . 5 ⊢ ∅ ∈ Word 𝑆 | |
5 | eleq1a 2836 | . . . . 5 ⊢ (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 ∈ Word 𝑆) |
7 | fveq2 6769 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
8 | hash0 14072 | . . . . . . . . 9 ⊢ (♯‘∅) = 0 | |
9 | 7, 8 | eqtrdi 2796 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
10 | 9 | oveq1d 7284 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1)) |
11 | 0red 10971 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 0 ∈ ℝ) | |
12 | 11 | lem1d 11900 | . . . . . . 7 ⊢ (𝑤 = ∅ → (0 − 1) ≤ 0) |
13 | 10, 12 | eqbrtrd 5101 | . . . . . 6 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0) |
14 | 0z 12322 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
15 | 9, 14 | eqeltrdi 2849 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ) |
16 | 1zzd 12343 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 1 ∈ ℤ) | |
17 | 15, 16 | zsubcld 12422 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ) |
18 | fzon 13398 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) | |
19 | 14, 17, 18 | sylancr 587 | . . . . . 6 ⊢ (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) |
20 | 13, 19 | mpbid 231 | . . . . 5 ⊢ (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅) |
21 | rzal 4445 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
23 | 6, 22 | jca 512 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
24 | 3, 23 | mpgbir 1806 | . 2 ⊢ ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
25 | df-upword 46472 | . 2 ⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
26 | 24, 25 | eleqtrri 2840 | 1 ⊢ ∅ ∈ UpWord𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1540 = wceq 1542 ∈ wcel 2110 {cab 2717 ∀wral 3066 Vcvv 3431 ∅c0 4262 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 0cc0 10864 1c1 10865 + caddc 10867 < clt 11002 ≤ cle 11003 − cmin 11197 ℤcz 12311 ..^cfzo 13373 ♯chash 14034 Word cword 14207 UpWordcupword 46471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-n0 12226 df-z 12312 df-uz 12574 df-fz 13231 df-fzo 13374 df-hash 14035 df-word 14208 df-upword 46472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |