Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordnul | Structured version Visualization version GIF version |
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordnul | ⊢ ∅ ∈ UpWord𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5240 | . . . 4 ⊢ ∅ ∈ V | |
2 | elab6g 3605 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
4 | wrd0 14287 | . . . . 5 ⊢ ∅ ∈ Word 𝑆 | |
5 | eleq1a 2832 | . . . . 5 ⊢ (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 ∈ Word 𝑆) |
7 | fveq2 6804 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
8 | hash0 14127 | . . . . . . . . 9 ⊢ (♯‘∅) = 0 | |
9 | 7, 8 | eqtrdi 2792 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
10 | 9 | oveq1d 7322 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1)) |
11 | 0red 11024 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 0 ∈ ℝ) | |
12 | 11 | lem1d 11954 | . . . . . . 7 ⊢ (𝑤 = ∅ → (0 − 1) ≤ 0) |
13 | 10, 12 | eqbrtrd 5103 | . . . . . 6 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0) |
14 | 0z 12376 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
15 | 9, 14 | eqeltrdi 2845 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ) |
16 | 1zzd 12397 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 1 ∈ ℤ) | |
17 | 15, 16 | zsubcld 12477 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ) |
18 | fzon 13454 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) | |
19 | 14, 17, 18 | sylancr 588 | . . . . . 6 ⊢ (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) |
20 | 13, 19 | mpbid 231 | . . . . 5 ⊢ (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅) |
21 | rzal 4445 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
23 | 6, 22 | jca 513 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
24 | 3, 23 | mpgbir 1799 | . 2 ⊢ ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
25 | df-upword 46572 | . 2 ⊢ UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
26 | 24, 25 | eleqtrri 2836 | 1 ⊢ ∅ ∈ UpWord𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2713 ∀wral 3062 Vcvv 3437 ∅c0 4262 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 < clt 11055 ≤ cle 11056 − cmin 11251 ℤcz 12365 ..^cfzo 13428 ♯chash 14090 Word cword 14262 UpWordcupword 46571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-hash 14091 df-word 14263 df-upword 46572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |