| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordnul | Structured version Visualization version GIF version | ||
| Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| upwordnul | ⊢ ∅ ∈ UpWord 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5257 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | elab6g 3632 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
| 4 | wrd0 14480 | . . . . 5 ⊢ ∅ ∈ Word 𝑆 | |
| 5 | eleq1a 2823 | . . . . 5 ⊢ (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 ∈ Word 𝑆) |
| 7 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
| 8 | hash0 14308 | . . . . . . . . 9 ⊢ (♯‘∅) = 0 | |
| 9 | 7, 8 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
| 10 | 9 | oveq1d 7384 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1)) |
| 11 | 0red 11153 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 0 ∈ ℝ) | |
| 12 | 11 | lem1d 12092 | . . . . . . 7 ⊢ (𝑤 = ∅ → (0 − 1) ≤ 0) |
| 13 | 10, 12 | eqbrtrd 5124 | . . . . . 6 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0) |
| 14 | 0z 12516 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 15 | 9, 14 | eqeltrdi 2836 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ) |
| 16 | 1zzd 12540 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 1 ∈ ℤ) | |
| 17 | 15, 16 | zsubcld 12619 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ) |
| 18 | fzon 13617 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) | |
| 19 | 14, 17, 18 | sylancr 587 | . . . . . 6 ⊢ (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) |
| 20 | 13, 19 | mpbid 232 | . . . . 5 ⊢ (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅) |
| 21 | rzal 4468 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
| 23 | 6, 22 | jca 511 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
| 24 | 3, 23 | mpgbir 1799 | . 2 ⊢ ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
| 25 | df-upword 46850 | . 2 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
| 26 | 24, 25 | eleqtrri 2827 | 1 ⊢ ∅ ∈ UpWord 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3444 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 ℤcz 12505 ..^cfzo 13591 ♯chash 14271 Word cword 14454 UpWord cupword 46849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-upword 46850 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |