![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2077 and ax-11 2091. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2850 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | imbi12d 337 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 3, 4 | vtoclg 3483 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-12 2104 ax-ext 2747 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-nf 1747 df-cleq 2768 df-clel 2843 |
This theorem is referenced by: vtocl2ga 3491 vtoclri 3501 disjxiun 4924 wfis3 6025 opabiota 6572 fvmpt3 6597 fvmptss 6604 fnressn 6741 fressnfv 6743 caovord 7173 caovmo 7199 ordunisuc 7361 tfis3 7386 wfr2a 7773 onfununi 7779 smogt 7805 tz7.44-1 7843 tz7.44-2 7844 tz7.44-3 7845 nnacl 8034 nnmcl 8035 nnecl 8036 nnacom 8040 nnaass 8045 nndi 8046 nnmass 8047 nnmsucr 8048 nnmcom 8049 nnmordi 8054 ixpfn 8261 findcard 8548 findcard2 8549 marypha1 8689 cantnfle 8924 cantnflem1 8942 cnfcom 8953 fseqenlem1 9240 ackbij1lem8 9443 cardcf 9468 cfsmolem 9486 wunex2 9954 ingru 10031 recrecnq 10183 prlem934 10249 nn1suc 11458 uzind4s2 12120 rpnnen1lem6 12193 cnref1o 12196 xmulasslem 12491 om2uzsuci 13128 expcl2lem 13253 hashpw 13604 seqcoll 13629 climub 14873 climserle 14874 sumrblem 14922 fsumcvg 14923 summolem2a 14926 infcvgaux2i 15067 prodfn0 15104 prodfrec 15105 prodrblem 15137 fprodcvg 15138 prodmolem2a 15142 divalglem8 15605 bezoutlem1 15737 alginv 15769 algcvg 15770 algcvga 15773 algfx 15774 prmind2 15879 prmpwdvds 16090 cnextfvval 22371 xrsxmet 23114 xrhmeo 23247 cmetcaulem 23588 bcth3 23631 itg2addlem 24056 taylfval 24644 sinord 24813 logexprlim 25497 lgsdir2lem4 25600 hlim2 28742 elnlfn 29480 lnconi 29585 chirredlem3 29944 chirredlem4 29945 cnre2csqlem 30788 eulerpartlemsf 31253 eulerpartlemn 31275 bnj1321 31935 bnj1418 31948 subfacp1lem1 32001 frins3 32584 fpr2 32631 frr2 32636 nn0prpwlem 33161 findreccl 33291 mptsnunlem 34026 rdgeqoa 34058 domalom 34091 poimirlem22 34333 poimirlem26 34337 mblfinlem3 34350 mblfinlem4 34351 ismblfin 34352 ftc1anclem3 34388 ftc1anclem8 34393 sdclem2 34437 iscringd 34696 renegclALT 35522 zindbi 38917 fmuldfeq 41274 sumnnodd 41321 iblspltprt 41667 stoweidlem2 41697 stoweidlem17 41712 stoweidlem21 41716 stoweidlem43 41738 stoweidlem51 41746 wallispi 41765 |
Copyright terms: Public domain | W3C validator |