![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 3, 4 | vtoclg 3566 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: vtocl2ga 3590 vtocl3ga 3595 vtoclri 3603 disjxiun 5163 wfis3 6393 opabiota 7004 fvmpt3 7033 fvmptss 7041 fnressn 7192 fressnfv 7194 caovord 7661 caovmo 7687 ordunisuc 7868 tfis3 7895 fpr2a 8343 frrdmcl 8349 wfr2aOLD 8382 onfununi 8397 smogt 8423 tz7.44-1 8462 tz7.44-2 8463 tz7.44-3 8464 nnacl 8667 nnmcl 8668 nnecl 8669 nnacom 8673 nnaass 8678 nndi 8679 nnmass 8680 nnmsucr 8681 nnmcom 8682 nnmordi 8687 ixpfn 8961 findcard 9229 findcard2 9230 marypha1 9503 cantnfle 9740 cantnflem1 9758 cnfcom 9769 frr2 9829 fseqenlem1 10093 nnadju 10267 ackbij1lem8 10295 cardcf 10321 cfsmolem 10339 wunex2 10807 ingru 10884 recrecnq 11036 prlem934 11102 nn1suc 12315 uzind4s2 12974 rpnnen1lem6 13047 cnref1o 13050 xmulasslem 13347 om2uzsuci 13999 expcl2lem 14124 hashpw 14485 seqcoll 14513 climub 15710 climserle 15711 sumrblem 15759 fsumcvg 15760 summolem2a 15763 infcvgaux2i 15906 prodfn0 15942 prodfrec 15943 prodrblem 15977 fprodcvg 15978 prodmolem2a 15982 divalglem8 16448 bezoutlem1 16586 alginv 16622 algcvg 16623 algcvga 16626 algfx 16627 prmind2 16732 prmpwdvds 16951 cnextfvval 24094 xrsxmet 24850 xrhmeo 24996 cmetcaulem 25341 bcth3 25384 itg2addlem 25813 taylfval 26418 sinord 26594 logexprlim 27287 lgsdir2lem4 27390 noseqind 28316 hlim2 31224 elnlfn 31960 lnconi 32065 chirredlem3 32424 chirredlem4 32425 cnre2csqlem 33856 eulerpartlemsf 34324 eulerpartlemn 34346 bnj1321 35003 bnj1418 35016 subfacp1lem1 35147 nn0prpwlem 36288 findreccl 36419 weiunlem2 36429 mptsnunlem 37304 rdgeqoa 37336 domalom 37370 poimirlem22 37602 poimirlem26 37606 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 ftc1anclem3 37655 ftc1anclem8 37660 sdclem2 37702 iscringd 37958 renegclALT 38919 zindbi 42903 fmuldfeq 45504 sumnnodd 45551 iblspltprt 45894 stoweidlem2 45923 stoweidlem17 45938 stoweidlem21 45942 stoweidlem43 45964 stoweidlem51 45972 wallispi 45991 upwordisword 46800 |
Copyright terms: Public domain | W3C validator |