| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3509 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: vtocl2ga 3533 vtocl3ga 3538 vtoclri 3545 disjxiun 5089 wfis3 6305 opabiota 6905 fvmpt3 6934 fvmptss 6942 fnressn 7092 fressnfv 7094 caovord 7560 caovmo 7586 ordunisuc 7765 tfis3 7791 fpr2a 8235 frrdmcl 8241 onfununi 8264 smogt 8290 tz7.44-1 8328 tz7.44-2 8329 tz7.44-3 8330 nnacl 8529 nnmcl 8530 nnecl 8531 nnacom 8535 nnaass 8540 nndi 8541 nnmass 8542 nnmsucr 8543 nnmcom 8544 nnmordi 8549 ixpfn 8830 findcard 9077 findcard2 9078 marypha1 9324 cantnfle 9567 cantnflem1 9585 cnfcom 9596 frr2 9656 fseqenlem1 9918 nnadju 10092 ackbij1lem8 10120 cardcf 10146 cfsmolem 10164 wunex2 10632 ingru 10709 recrecnq 10861 prlem934 10927 nn1suc 12150 uzind4s2 12810 rpnnen1lem6 12883 cnref1o 12886 xmulasslem 13187 om2uzsuci 13855 expcl2lem 13980 hashpw 14343 seqcoll 14371 climub 15569 climserle 15570 sumrblem 15618 fsumcvg 15619 summolem2a 15622 infcvgaux2i 15765 prodfn0 15801 prodfrec 15802 prodrblem 15836 fprodcvg 15837 prodmolem2a 15841 divalglem8 16311 bezoutlem1 16450 alginv 16486 algcvg 16487 algcvga 16490 algfx 16491 prmind2 16596 prmpwdvds 16816 cnextfvval 23950 xrsxmet 24696 xrhmeo 24842 cmetcaulem 25186 bcth3 25229 itg2addlem 25657 taylfval 26264 sinord 26441 logexprlim 27134 lgsdir2lem4 27237 noseqind 28193 hlim2 31140 elnlfn 31876 lnconi 31981 chirredlem3 32340 chirredlem4 32341 cnre2csqlem 33893 eulerpartlemsf 34343 eulerpartlemn 34365 bnj1321 35010 bnj1418 35023 subfacp1lem1 35172 nn0prpwlem 36316 findreccl 36447 weiunlem2 36457 mptsnunlem 37332 rdgeqoa 37364 domalom 37398 poimirlem22 37642 poimirlem26 37646 mblfinlem3 37659 mblfinlem4 37660 ismblfin 37661 ftc1anclem3 37695 ftc1anclem8 37700 sdclem2 37742 iscringd 37998 renegclALT 38962 zindbi 42939 fmuldfeq 45584 sumnnodd 45631 iblspltprt 45974 stoweidlem2 46003 stoweidlem17 46018 stoweidlem21 46022 stoweidlem43 46044 stoweidlem51 46052 wallispi 46071 upwordisword 46882 |
| Copyright terms: Public domain | W3C validator |