| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3520 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: vtocl2ga 3544 vtocl3ga 3549 vtoclri 3556 disjxiun 5104 wfis3 6330 opabiota 6943 fvmpt3 6972 fvmptss 6980 fnressn 7130 fressnfv 7132 caovord 7600 caovmo 7626 ordunisuc 7807 tfis3 7834 fpr2a 8281 frrdmcl 8287 onfununi 8310 smogt 8336 tz7.44-1 8374 tz7.44-2 8375 tz7.44-3 8376 nnacl 8575 nnmcl 8576 nnecl 8577 nnacom 8581 nnaass 8586 nndi 8587 nnmass 8588 nnmsucr 8589 nnmcom 8590 nnmordi 8595 ixpfn 8876 findcard 9127 findcard2 9128 marypha1 9385 cantnfle 9624 cantnflem1 9642 cnfcom 9653 frr2 9713 fseqenlem1 9977 nnadju 10151 ackbij1lem8 10179 cardcf 10205 cfsmolem 10223 wunex2 10691 ingru 10768 recrecnq 10920 prlem934 10986 nn1suc 12208 uzind4s2 12868 rpnnen1lem6 12941 cnref1o 12944 xmulasslem 13245 om2uzsuci 13913 expcl2lem 14038 hashpw 14401 seqcoll 14429 climub 15628 climserle 15629 sumrblem 15677 fsumcvg 15678 summolem2a 15681 infcvgaux2i 15824 prodfn0 15860 prodfrec 15861 prodrblem 15895 fprodcvg 15896 prodmolem2a 15900 divalglem8 16370 bezoutlem1 16509 alginv 16545 algcvg 16546 algcvga 16549 algfx 16550 prmind2 16655 prmpwdvds 16875 cnextfvval 23952 xrsxmet 24698 xrhmeo 24844 cmetcaulem 25188 bcth3 25231 itg2addlem 25659 taylfval 26266 sinord 26443 logexprlim 27136 lgsdir2lem4 27239 noseqind 28186 hlim2 31121 elnlfn 31857 lnconi 31962 chirredlem3 32321 chirredlem4 32322 cnre2csqlem 33900 eulerpartlemsf 34350 eulerpartlemn 34372 bnj1321 35017 bnj1418 35030 subfacp1lem1 35166 nn0prpwlem 36310 findreccl 36441 weiunlem2 36451 mptsnunlem 37326 rdgeqoa 37358 domalom 37392 poimirlem22 37636 poimirlem26 37640 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 ftc1anclem3 37689 ftc1anclem8 37694 sdclem2 37736 iscringd 37992 renegclALT 38956 zindbi 42935 fmuldfeq 45581 sumnnodd 45628 iblspltprt 45971 stoweidlem2 46000 stoweidlem17 46015 stoweidlem21 46019 stoweidlem43 46041 stoweidlem51 46049 wallispi 46068 upwordisword 46879 |
| Copyright terms: Public domain | W3C validator |