| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2144 and ax-11 2160. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3507 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: vtocl2ga 3529 vtocl3ga 3534 vtoclri 3540 disjxiun 5086 wfis3 6304 opabiota 6904 fvmpt3 6933 fvmptss 6941 fnressn 7091 fressnfv 7093 caovord 7557 caovmo 7583 ordunisuc 7762 tfis3 7788 fpr2a 8232 frrdmcl 8238 onfununi 8261 smogt 8287 tz7.44-1 8325 tz7.44-2 8326 tz7.44-3 8327 nnacl 8526 nnmcl 8527 nnecl 8528 nnacom 8532 nnaass 8537 nndi 8538 nnmass 8539 nnmsucr 8540 nnmcom 8541 nnmordi 8546 ixpfn 8827 findcard 9073 findcard2 9074 marypha1 9318 cantnfle 9561 cantnflem1 9579 cnfcom 9590 frr2 9653 fseqenlem1 9915 nnadju 10089 ackbij1lem8 10117 cardcf 10143 cfsmolem 10161 wunex2 10629 ingru 10706 recrecnq 10858 prlem934 10924 nn1suc 12147 uzind4s2 12807 rpnnen1lem6 12880 cnref1o 12883 xmulasslem 13184 om2uzsuci 13855 expcl2lem 13980 hashpw 14343 seqcoll 14371 climub 15569 climserle 15570 sumrblem 15618 fsumcvg 15619 summolem2a 15622 infcvgaux2i 15765 prodfn0 15801 prodfrec 15802 prodrblem 15836 fprodcvg 15837 prodmolem2a 15841 divalglem8 16311 bezoutlem1 16450 alginv 16486 algcvg 16487 algcvga 16490 algfx 16491 prmind2 16596 prmpwdvds 16816 cnextfvval 23980 xrsxmet 24725 xrhmeo 24871 cmetcaulem 25215 bcth3 25258 itg2addlem 25686 taylfval 26293 sinord 26470 logexprlim 27163 lgsdir2lem4 27266 noseqind 28222 hlim2 31172 elnlfn 31908 lnconi 32013 chirredlem3 32372 chirredlem4 32373 cnre2csqlem 33923 eulerpartlemsf 34372 eulerpartlemn 34394 bnj1321 35039 bnj1418 35052 subfacp1lem1 35223 nn0prpwlem 36366 findreccl 36497 weiunlem2 36507 mptsnunlem 37382 rdgeqoa 37414 domalom 37448 poimirlem22 37681 poimirlem26 37685 mblfinlem3 37698 mblfinlem4 37699 ismblfin 37700 ftc1anclem3 37734 ftc1anclem8 37739 sdclem2 37781 iscringd 38037 renegclALT 39061 zindbi 43038 fmuldfeq 45682 sumnnodd 45729 iblspltprt 46070 stoweidlem2 46099 stoweidlem17 46114 stoweidlem21 46118 stoweidlem43 46140 stoweidlem51 46148 wallispi 46167 |
| Copyright terms: Public domain | W3C validator |