![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2139 and ax-11 2155. (Revised by GG, 20-Aug-2023.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 3, 4 | vtoclg 3554 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: vtocl2ga 3578 vtocl3ga 3583 vtoclri 3590 disjxiun 5145 wfis3 6384 opabiota 6991 fvmpt3 7020 fvmptss 7028 fnressn 7178 fressnfv 7180 caovord 7644 caovmo 7670 ordunisuc 7852 tfis3 7879 fpr2a 8326 frrdmcl 8332 wfr2aOLD 8365 onfununi 8380 smogt 8406 tz7.44-1 8445 tz7.44-2 8446 tz7.44-3 8447 nnacl 8648 nnmcl 8649 nnecl 8650 nnacom 8654 nnaass 8659 nndi 8660 nnmass 8661 nnmsucr 8662 nnmcom 8663 nnmordi 8668 ixpfn 8942 findcard 9202 findcard2 9203 marypha1 9472 cantnfle 9709 cantnflem1 9727 cnfcom 9738 frr2 9798 fseqenlem1 10062 nnadju 10236 ackbij1lem8 10264 cardcf 10290 cfsmolem 10308 wunex2 10776 ingru 10853 recrecnq 11005 prlem934 11071 nn1suc 12286 uzind4s2 12949 rpnnen1lem6 13022 cnref1o 13025 xmulasslem 13324 om2uzsuci 13986 expcl2lem 14111 hashpw 14472 seqcoll 14500 climub 15695 climserle 15696 sumrblem 15744 fsumcvg 15745 summolem2a 15748 infcvgaux2i 15891 prodfn0 15927 prodfrec 15928 prodrblem 15962 fprodcvg 15963 prodmolem2a 15967 divalglem8 16434 bezoutlem1 16573 alginv 16609 algcvg 16610 algcvga 16613 algfx 16614 prmind2 16719 prmpwdvds 16938 cnextfvval 24089 xrsxmet 24845 xrhmeo 24991 cmetcaulem 25336 bcth3 25379 itg2addlem 25808 taylfval 26415 sinord 26591 logexprlim 27284 lgsdir2lem4 27387 noseqind 28313 hlim2 31221 elnlfn 31957 lnconi 32062 chirredlem3 32421 chirredlem4 32422 cnre2csqlem 33871 eulerpartlemsf 34341 eulerpartlemn 34363 bnj1321 35020 bnj1418 35033 subfacp1lem1 35164 nn0prpwlem 36305 findreccl 36436 weiunlem2 36446 mptsnunlem 37321 rdgeqoa 37353 domalom 37387 poimirlem22 37629 poimirlem26 37633 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 ftc1anclem3 37682 ftc1anclem8 37687 sdclem2 37729 iscringd 37985 renegclALT 38945 zindbi 42935 fmuldfeq 45539 sumnnodd 45586 iblspltprt 45929 stoweidlem2 45958 stoweidlem17 45973 stoweidlem21 45977 stoweidlem43 45999 stoweidlem51 46007 wallispi 46026 upwordisword 46835 |
Copyright terms: Public domain | W3C validator |