| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3517 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: vtocl2ga 3541 vtocl3ga 3546 vtoclri 3553 disjxiun 5099 wfis3 6318 opabiota 6925 fvmpt3 6954 fvmptss 6962 fnressn 7112 fressnfv 7114 caovord 7580 caovmo 7606 ordunisuc 7787 tfis3 7814 fpr2a 8258 frrdmcl 8264 onfununi 8287 smogt 8313 tz7.44-1 8351 tz7.44-2 8352 tz7.44-3 8353 nnacl 8552 nnmcl 8553 nnecl 8554 nnacom 8558 nnaass 8563 nndi 8564 nnmass 8565 nnmsucr 8566 nnmcom 8567 nnmordi 8572 ixpfn 8853 findcard 9104 findcard2 9105 marypha1 9361 cantnfle 9602 cantnflem1 9620 cnfcom 9631 frr2 9691 fseqenlem1 9955 nnadju 10129 ackbij1lem8 10157 cardcf 10183 cfsmolem 10201 wunex2 10669 ingru 10746 recrecnq 10898 prlem934 10964 nn1suc 12186 uzind4s2 12846 rpnnen1lem6 12919 cnref1o 12922 xmulasslem 13223 om2uzsuci 13891 expcl2lem 14016 hashpw 14379 seqcoll 14407 climub 15605 climserle 15606 sumrblem 15654 fsumcvg 15655 summolem2a 15658 infcvgaux2i 15801 prodfn0 15837 prodfrec 15838 prodrblem 15872 fprodcvg 15873 prodmolem2a 15877 divalglem8 16347 bezoutlem1 16486 alginv 16522 algcvg 16523 algcvga 16526 algfx 16527 prmind2 16632 prmpwdvds 16852 cnextfvval 23986 xrsxmet 24732 xrhmeo 24878 cmetcaulem 25222 bcth3 25265 itg2addlem 25693 taylfval 26300 sinord 26477 logexprlim 27170 lgsdir2lem4 27273 noseqind 28227 hlim2 31172 elnlfn 31908 lnconi 32013 chirredlem3 32372 chirredlem4 32373 cnre2csqlem 33894 eulerpartlemsf 34344 eulerpartlemn 34366 bnj1321 35011 bnj1418 35024 subfacp1lem1 35160 nn0prpwlem 36304 findreccl 36435 weiunlem2 36445 mptsnunlem 37320 rdgeqoa 37352 domalom 37386 poimirlem22 37630 poimirlem26 37634 mblfinlem3 37647 mblfinlem4 37648 ismblfin 37649 ftc1anclem3 37683 ftc1anclem8 37688 sdclem2 37730 iscringd 37986 renegclALT 38950 zindbi 42929 fmuldfeq 45575 sumnnodd 45622 iblspltprt 45965 stoweidlem2 45994 stoweidlem17 46009 stoweidlem21 46013 stoweidlem43 46035 stoweidlem51 46043 wallispi 46062 upwordisword 46873 |
| Copyright terms: Public domain | W3C validator |