| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3538 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: vtocl2ga 3562 vtocl3ga 3567 vtoclri 3574 disjxiun 5121 wfis3 6355 opabiota 6966 fvmpt3 6995 fvmptss 7003 fnressn 7153 fressnfv 7155 caovord 7623 caovmo 7649 ordunisuc 7831 tfis3 7858 fpr2a 8306 frrdmcl 8312 wfr2aOLD 8345 onfununi 8360 smogt 8386 tz7.44-1 8425 tz7.44-2 8426 tz7.44-3 8427 nnacl 8628 nnmcl 8629 nnecl 8630 nnacom 8634 nnaass 8639 nndi 8640 nnmass 8641 nnmsucr 8642 nnmcom 8643 nnmordi 8648 ixpfn 8922 findcard 9182 findcard2 9183 marypha1 9451 cantnfle 9690 cantnflem1 9708 cnfcom 9719 frr2 9779 fseqenlem1 10043 nnadju 10217 ackbij1lem8 10245 cardcf 10271 cfsmolem 10289 wunex2 10757 ingru 10834 recrecnq 10986 prlem934 11052 nn1suc 12267 uzind4s2 12930 rpnnen1lem6 13003 cnref1o 13006 xmulasslem 13306 om2uzsuci 13971 expcl2lem 14096 hashpw 14459 seqcoll 14487 climub 15683 climserle 15684 sumrblem 15732 fsumcvg 15733 summolem2a 15736 infcvgaux2i 15879 prodfn0 15915 prodfrec 15916 prodrblem 15950 fprodcvg 15951 prodmolem2a 15955 divalglem8 16424 bezoutlem1 16563 alginv 16599 algcvg 16600 algcvga 16603 algfx 16604 prmind2 16709 prmpwdvds 16929 cnextfvval 24008 xrsxmet 24754 xrhmeo 24900 cmetcaulem 25245 bcth3 25288 itg2addlem 25716 taylfval 26323 sinord 26500 logexprlim 27193 lgsdir2lem4 27296 noseqind 28243 hlim2 31178 elnlfn 31914 lnconi 32019 chirredlem3 32378 chirredlem4 32379 cnre2csqlem 33946 eulerpartlemsf 34396 eulerpartlemn 34418 bnj1321 35063 bnj1418 35076 subfacp1lem1 35206 nn0prpwlem 36345 findreccl 36476 weiunlem2 36486 mptsnunlem 37361 rdgeqoa 37393 domalom 37427 poimirlem22 37671 poimirlem26 37675 mblfinlem3 37688 mblfinlem4 37689 ismblfin 37690 ftc1anclem3 37724 ftc1anclem8 37729 sdclem2 37771 iscringd 38027 renegclALT 38986 zindbi 42945 fmuldfeq 45592 sumnnodd 45639 iblspltprt 45982 stoweidlem2 46011 stoweidlem17 46026 stoweidlem21 46030 stoweidlem43 46052 stoweidlem51 46060 wallispi 46079 upwordisword 46890 |
| Copyright terms: Public domain | W3C validator |