| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | vtoclga.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 4 | vtoclga.2 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 3, 4 | vtoclg 3517 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: vtocl2ga 3541 vtocl3ga 3546 vtoclri 3553 disjxiun 5099 wfis3 6318 opabiota 6925 fvmpt3 6954 fvmptss 6962 fnressn 7112 fressnfv 7114 caovord 7580 caovmo 7606 ordunisuc 7787 tfis3 7814 fpr2a 8258 frrdmcl 8264 onfununi 8287 smogt 8313 tz7.44-1 8351 tz7.44-2 8352 tz7.44-3 8353 nnacl 8552 nnmcl 8553 nnecl 8554 nnacom 8558 nnaass 8563 nndi 8564 nnmass 8565 nnmsucr 8566 nnmcom 8567 nnmordi 8572 ixpfn 8853 findcard 9104 findcard2 9105 marypha1 9361 cantnfle 9600 cantnflem1 9618 cnfcom 9629 frr2 9689 fseqenlem1 9953 nnadju 10127 ackbij1lem8 10155 cardcf 10181 cfsmolem 10199 wunex2 10667 ingru 10744 recrecnq 10896 prlem934 10962 nn1suc 12184 uzind4s2 12844 rpnnen1lem6 12917 cnref1o 12920 xmulasslem 13221 om2uzsuci 13889 expcl2lem 14014 hashpw 14377 seqcoll 14405 climub 15604 climserle 15605 sumrblem 15653 fsumcvg 15654 summolem2a 15657 infcvgaux2i 15800 prodfn0 15836 prodfrec 15837 prodrblem 15871 fprodcvg 15872 prodmolem2a 15876 divalglem8 16346 bezoutlem1 16485 alginv 16521 algcvg 16522 algcvga 16525 algfx 16526 prmind2 16631 prmpwdvds 16851 cnextfvval 23985 xrsxmet 24731 xrhmeo 24877 cmetcaulem 25221 bcth3 25264 itg2addlem 25692 taylfval 26299 sinord 26476 logexprlim 27169 lgsdir2lem4 27272 noseqind 28226 hlim2 31171 elnlfn 31907 lnconi 32012 chirredlem3 32371 chirredlem4 32372 cnre2csqlem 33893 eulerpartlemsf 34343 eulerpartlemn 34365 bnj1321 35010 bnj1418 35023 subfacp1lem1 35159 nn0prpwlem 36303 findreccl 36434 weiunlem2 36444 mptsnunlem 37319 rdgeqoa 37351 domalom 37385 poimirlem22 37629 poimirlem26 37633 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 ftc1anclem3 37682 ftc1anclem8 37687 sdclem2 37729 iscringd 37985 renegclALT 38949 zindbi 42928 fmuldfeq 45574 sumnnodd 45621 iblspltprt 45964 stoweidlem2 45993 stoweidlem17 46008 stoweidlem21 46012 stoweidlem43 46034 stoweidlem51 46042 wallispi 46061 upwordisword 46872 |
| Copyright terms: Public domain | W3C validator |