MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjssun Structured version   Visualization version   GIF version

Theorem disjssun 4418
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))

Proof of Theorem disjssun
StepHypRef Expression
1 uneq2 4112 . . . 4 ((𝐴𝐵) = ∅ → ((𝐴𝐶) ∪ (𝐴𝐵)) = ((𝐴𝐶) ∪ ∅))
2 indi 4234 . . . . 5 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32equncomi 4110 . . . 4 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∪ (𝐴𝐵))
4 un0 4344 . . . . 5 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
54eqcomi 2740 . . . 4 (𝐴𝐶) = ((𝐴𝐶) ∪ ∅)
61, 3, 53eqtr4g 2791 . . 3 ((𝐴𝐵) = ∅ → (𝐴 ∩ (𝐵𝐶)) = (𝐴𝐶))
76eqeq1d 2733 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ∩ (𝐵𝐶)) = 𝐴 ↔ (𝐴𝐶) = 𝐴))
8 dfss2 3920 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴 ∩ (𝐵𝐶)) = 𝐴)
9 dfss2 3920 . 2 (𝐴𝐶 ↔ (𝐴𝐶) = 𝐴)
107, 8, 93bitr4g 314 1 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  cun 3900  cin 3901  wss 3902  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by:  ssfi  9082  hashbclem  14359  alexsubALTlem2  23964  iccntr  24738  reconnlem1  24743  dvne0  25944
  Copyright terms: Public domain W3C validator