MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjssun Structured version   Visualization version   GIF version

Theorem disjssun 4398
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))

Proof of Theorem disjssun
StepHypRef Expression
1 uneq2 4087 . . . 4 ((𝐴𝐵) = ∅ → ((𝐴𝐶) ∪ (𝐴𝐵)) = ((𝐴𝐶) ∪ ∅))
2 indi 4204 . . . . 5 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
32equncomi 4085 . . . 4 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∪ (𝐴𝐵))
4 un0 4321 . . . . 5 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
54eqcomi 2747 . . . 4 (𝐴𝐶) = ((𝐴𝐶) ∪ ∅)
61, 3, 53eqtr4g 2804 . . 3 ((𝐴𝐵) = ∅ → (𝐴 ∩ (𝐵𝐶)) = (𝐴𝐶))
76eqeq1d 2740 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ∩ (𝐵𝐶)) = 𝐴 ↔ (𝐴𝐶) = 𝐴))
8 df-ss 3900 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴 ∩ (𝐵𝐶)) = 𝐴)
9 df-ss 3900 . 2 (𝐴𝐶 ↔ (𝐴𝐶) = 𝐴)
107, 8, 93bitr4g 313 1 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  cun 3881  cin 3882  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  ssfi  8918  hashbclem  14092  alexsubALTlem2  23107  iccntr  23890  reconnlem1  23895  dvne0  25080
  Copyright terms: Public domain W3C validator