![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjssun | Structured version Visualization version GIF version |
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjssun | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq2 4149 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵)) = ((𝐴 ∩ 𝐶) ∪ ∅)) | |
2 | indi 4265 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
3 | 2 | equncomi 4147 | . . . 4 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵)) |
4 | un0 4382 | . . . . 5 ⊢ ((𝐴 ∩ 𝐶) ∪ ∅) = (𝐴 ∩ 𝐶) | |
5 | 4 | eqcomi 2733 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ ∅) |
6 | 1, 3, 5 | 3eqtr4g 2789 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ (𝐵 ∪ 𝐶)) = (𝐴 ∩ 𝐶)) |
7 | 6 | eqeq1d 2726 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ (𝐵 ∪ 𝐶)) = 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐴)) |
8 | df-ss 3957 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = 𝐴) | |
9 | df-ss 3957 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐴 ∩ 𝐶) = 𝐴) | |
10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 |
This theorem is referenced by: ssfi 9168 hashbclem 14407 alexsubALTlem2 23862 iccntr 24647 reconnlem1 24652 dvne0 25854 |
Copyright terms: Public domain | W3C validator |