| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setind | Structured version Visualization version GIF version | ||
| Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssindif0 4444 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 2 | sseq1 3989 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 3 | eleq1w 2818 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 5 | 4 | spvv 1988 | . . . . . . 7 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴)) |
| 6 | 1, 5 | biimtrrid 243 | . . . . . 6 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦 ∈ 𝐴)) |
| 7 | eldifn 4112 | . . . . . 6 ⊢ (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
| 8 | 6, 7 | nsyli 157 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)) |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅) |
| 10 | 9 | nrexdv 3136 | . . 3 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) |
| 11 | zfregs 9751 | . . . 4 ⊢ ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 12 | 11 | necon1bi 2961 | . . 3 ⊢ (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (V ∖ 𝐴) = ∅) |
| 14 | vdif0 4449 | . 2 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 |
| This theorem is referenced by: setind2 9754 tz9.13 9810 unir1 9832 setinds 35801 vsetrec 49534 |
| Copyright terms: Public domain | W3C validator |