![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setind | Structured version Visualization version GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssindif0 4458 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
2 | sseq1 4002 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
3 | eleq1w 2810 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 2, 3 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
5 | 4 | spvv 1992 | . . . . . . 7 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴)) |
6 | 1, 5 | biimtrrid 242 | . . . . . 6 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦 ∈ 𝐴)) |
7 | eldifn 4122 | . . . . . 6 ⊢ (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
8 | 6, 7 | nsyli 157 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)) |
9 | 8 | imp 406 | . . . 4 ⊢ ((∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅) |
10 | 9 | nrexdv 3143 | . . 3 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) |
11 | zfregs 9726 | . . . 4 ⊢ ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
12 | 11 | necon1bi 2963 | . . 3 ⊢ (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅) |
13 | 10, 12 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (V ∖ 𝐴) = ∅) |
14 | vdif0 4463 | . 2 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 ∖ cdif 3940 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 |
This theorem is referenced by: setind2 9729 tz9.13 9785 unir1 9807 setinds 35283 vsetrec 48003 |
Copyright terms: Public domain | W3C validator |