MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Structured version   Visualization version   GIF version

Theorem setind 9753
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssindif0 4444 . . . . . . 7 (𝑦𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
2 sseq1 3989 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2818 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
42, 3imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐴) ↔ (𝑦𝐴𝑦𝐴)))
54spvv 1988 . . . . . . 7 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦𝐴𝑦𝐴))
61, 5biimtrrid 243 . . . . . 6 (∀𝑥(𝑥𝐴𝑥𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦𝐴))
7 eldifn 4112 . . . . . 6 (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦𝐴)
86, 7nsyli 157 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅))
98imp 406 . . . 4 ((∀𝑥(𝑥𝐴𝑥𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
109nrexdv 3136 . . 3 (∀𝑥(𝑥𝐴𝑥𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
11 zfregs 9751 . . . 4 ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
1211necon1bi 2961 . . 3 (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅)
1310, 12syl 17 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → (V ∖ 𝐴) = ∅)
14 vdif0 4449 . 2 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)
1513, 14sylibr 234 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  wss 3931  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  setind2  9754  tz9.13  9810  unir1  9832  setinds  35801  vsetrec  49534
  Copyright terms: Public domain W3C validator