MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Structured version   Visualization version   GIF version

Theorem setind 9687
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssindif0 4427 . . . . . . 7 (𝑦𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
2 sseq1 3972 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2811 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
42, 3imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐴) ↔ (𝑦𝐴𝑦𝐴)))
54spvv 1988 . . . . . . 7 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦𝐴𝑦𝐴))
61, 5biimtrrid 243 . . . . . 6 (∀𝑥(𝑥𝐴𝑥𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦𝐴))
7 eldifn 4095 . . . . . 6 (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦𝐴)
86, 7nsyli 157 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅))
98imp 406 . . . 4 ((∀𝑥(𝑥𝐴𝑥𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
109nrexdv 3128 . . 3 (∀𝑥(𝑥𝐴𝑥𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
11 zfregs 9685 . . . 4 ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
1211necon1bi 2953 . . 3 (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅)
1310, 12syl 17 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → (V ∖ 𝐴) = ∅)
14 vdif0 4432 . 2 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)
1513, 14sylibr 234 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  setind2  9688  tz9.13  9744  unir1  9766  setinds  35766  vsetrec  49692
  Copyright terms: Public domain W3C validator