MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setind Structured version   Visualization version   GIF version

Theorem setind 9740
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssindif0 4437 . . . . . . 7 (𝑦𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
2 sseq1 3982 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2816 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
42, 3imbi12d 344 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐴) ↔ (𝑦𝐴𝑦𝐴)))
54spvv 1995 . . . . . . 7 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦𝐴𝑦𝐴))
61, 5biimtrrid 243 . . . . . 6 (∀𝑥(𝑥𝐴𝑥𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦𝐴))
7 eldifn 4105 . . . . . 6 (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦𝐴)
86, 7nsyli 157 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅))
98imp 406 . . . 4 ((∀𝑥(𝑥𝐴𝑥𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)
109nrexdv 3133 . . 3 (∀𝑥(𝑥𝐴𝑥𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
11 zfregs 9738 . . . 4 ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅)
1211necon1bi 2959 . . 3 (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅)
1310, 12syl 17 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → (V ∖ 𝐴) = ∅)
14 vdif0 4442 . 2 (𝐴 = V ↔ (V ∖ 𝐴) = ∅)
1513, 14sylibr 234 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3457  cdif 3921  cin 3923  wss 3924  c0 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723  ax-reg 9598  ax-inf2 9647
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418
This theorem is referenced by:  setind2  9741  tz9.13  9797  unir1  9819  setinds  35717  vsetrec  49287
  Copyright terms: Public domain W3C validator