| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setind | Structured version Visualization version GIF version | ||
| Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssindif0 4413 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 2 | sseq1 3956 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 3 | eleq1w 2816 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 5 | 4 | spvv 1989 | . . . . . . 7 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴)) |
| 6 | 1, 5 | biimtrrid 243 | . . . . . 6 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦 ∈ 𝐴)) |
| 7 | eldifn 4081 | . . . . . 6 ⊢ (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
| 8 | 6, 7 | nsyli 157 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)) |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅) |
| 10 | 9 | nrexdv 3128 | . . 3 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) |
| 11 | zfregs 9629 | . . . 4 ⊢ ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 12 | 11 | necon1bi 2957 | . . 3 ⊢ (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (V ∖ 𝐴) = ∅) |
| 14 | vdif0 4418 | . 2 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: setind2 9645 setinds 9646 tz9.13 9691 unir1 9713 vsetrec 49828 |
| Copyright terms: Public domain | W3C validator |