|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > setind | Structured version Visualization version GIF version | ||
| Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssindif0 4463 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 2 | sseq1 4008 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 3 | eleq1w 2823 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) | 
| 5 | 4 | spvv 1995 | . . . . . . 7 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴)) | 
| 6 | 1, 5 | biimtrrid 243 | . . . . . 6 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦 ∈ 𝐴)) | 
| 7 | eldifn 4131 | . . . . . 6 ⊢ (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
| 8 | 6, 7 | nsyli 157 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)) | 
| 9 | 8 | imp 406 | . . . 4 ⊢ ((∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | 
| 10 | 9 | nrexdv 3148 | . . 3 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | 
| 11 | zfregs 9773 | . . . 4 ⊢ ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
| 12 | 11 | necon1bi 2968 | . . 3 ⊢ (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅) | 
| 13 | 10, 12 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (V ∖ 𝐴) = ∅) | 
| 14 | vdif0 4468 | . 2 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 Vcvv 3479 ∖ cdif 3947 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 | 
| This theorem is referenced by: setind2 9776 tz9.13 9832 unir1 9854 setinds 35780 vsetrec 49277 | 
| Copyright terms: Public domain | W3C validator |