![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setind | Structured version Visualization version GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssindif0 4459 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
2 | sseq1 4003 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
3 | eleq1w 2811 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 2, 3 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
5 | 4 | spvv 1993 | . . . . . . 7 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝐴)) |
6 | 1, 5 | biimtrrid 242 | . . . . . 6 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ((𝑦 ∩ (V ∖ 𝐴)) = ∅ → 𝑦 ∈ 𝐴)) |
7 | eldifn 4123 | . . . . . 6 ⊢ (𝑦 ∈ (V ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) | |
8 | 6, 7 | nsyli 157 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑦 ∈ (V ∖ 𝐴) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅)) |
9 | 8 | imp 406 | . . . 4 ⊢ ((∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (V ∖ 𝐴)) → ¬ (𝑦 ∩ (V ∖ 𝐴)) = ∅) |
10 | 9 | nrexdv 3144 | . . 3 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) |
11 | zfregs 9741 | . . . 4 ⊢ ((V ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅) | |
12 | 11 | necon1bi 2964 | . . 3 ⊢ (¬ ∃𝑦 ∈ (V ∖ 𝐴)(𝑦 ∩ (V ∖ 𝐴)) = ∅ → (V ∖ 𝐴) = ∅) |
13 | 10, 12 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (V ∖ 𝐴) = ∅) |
14 | vdif0 4464 | . 2 ⊢ (𝐴 = V ↔ (V ∖ 𝐴) = ∅) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 ax-reg 9601 ax-inf2 9650 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 |
This theorem is referenced by: setind2 9744 tz9.13 9800 unir1 9822 setinds 35297 vsetrec 48047 |
Copyright terms: Public domain | W3C validator |