![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vss | Structured version Visualization version GIF version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss | ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | 1 | biantrur 530 | . 2 ⊢ (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) |
3 | eqss 4024 | . 2 ⊢ (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 Vcvv 3488 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 |
This theorem is referenced by: vdif0 4492 |
Copyright terms: Public domain | W3C validator |