MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vss Structured version   Visualization version   GIF version

Theorem vss 4409
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
vss (V ⊆ 𝐴𝐴 = V)

Proof of Theorem vss
StepHypRef Expression
1 ssv 3971 . . 3 𝐴 ⊆ V
21biantrur 530 . 2 (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
3 eqss 3962 . 2 (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
42, 3bitr4i 278 1 (V ⊆ 𝐴𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3447  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931
This theorem is referenced by:  vdif0  4432
  Copyright terms: Public domain W3C validator