![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vss | Structured version Visualization version GIF version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss | ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3821 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | 1 | biantrur 527 | . 2 ⊢ (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) |
3 | eqss 3813 | . 2 ⊢ (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 270 | 1 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 Vcvv 3385 ⊆ wss 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-v 3387 df-in 3776 df-ss 3783 |
This theorem is referenced by: vdif0 4231 |
Copyright terms: Public domain | W3C validator |