MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vss Structured version   Visualization version   GIF version

Theorem vss 4469
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
vss (V ⊆ 𝐴𝐴 = V)

Proof of Theorem vss
StepHypRef Expression
1 ssv 4033 . . 3 𝐴 ⊆ V
21biantrur 530 . 2 (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
3 eqss 4024 . 2 (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴))
42, 3bitr4i 278 1 (V ⊆ 𝐴𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993
This theorem is referenced by:  vdif0  4492
  Copyright terms: Public domain W3C validator