Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vss | Structured version Visualization version GIF version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss | ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3941 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | 1 | biantrur 530 | . 2 ⊢ (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) |
3 | eqss 3932 | . 2 ⊢ (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: vdif0 4399 |
Copyright terms: Public domain | W3C validator |