MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un00 Structured version   Visualization version   GIF version

Theorem un00 4425
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)

Proof of Theorem un00
StepHypRef Expression
1 uneq12 4143 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
2 un0 4374 . . 3 (∅ ∪ ∅) = ∅
31, 2eqtrdi 2787 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = ∅)
4 ssun1 4158 . . . . 5 𝐴 ⊆ (𝐴𝐵)
5 sseq2 3990 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐴𝐵) ↔ 𝐴 ⊆ ∅))
64, 5mpbii 233 . . . 4 ((𝐴𝐵) = ∅ → 𝐴 ⊆ ∅)
7 ss0b 4381 . . . 4 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
86, 7sylib 218 . . 3 ((𝐴𝐵) = ∅ → 𝐴 = ∅)
9 ssun2 4159 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 sseq2 3990 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
119, 10mpbii 233 . . . 4 ((𝐴𝐵) = ∅ → 𝐵 ⊆ ∅)
12 ss0b 4381 . . . 4 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
1311, 12sylib 218 . . 3 ((𝐴𝐵) = ∅ → 𝐵 = ∅)
148, 13jca 511 . 2 ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))
153, 14impbii 209 1 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cun 3929  wss 3931  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314
This theorem is referenced by:  undisj1  4442  undisj2  4443  disjpr2  4694  rankxplim3  9900  ssxr  11309  rpnnen2lem12  16248  wwlksnext  29880  asindmre  37732  tfsconcat00  43338  iunrelexp0  43693  uneqsn  44016
  Copyright terms: Public domain W3C validator