Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > un00 | Structured version Visualization version GIF version |
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
un00 | ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq12 4088 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = (∅ ∪ ∅)) | |
2 | un0 4321 | . . 3 ⊢ (∅ ∪ ∅) = ∅ | |
3 | 1, 2 | eqtrdi 2795 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = ∅) |
4 | ssun1 4102 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
5 | sseq2 3943 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐴 ⊆ ∅)) | |
6 | 4, 5 | mpbii 232 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 ⊆ ∅) |
7 | ss0b 4328 | . . . 4 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
8 | 6, 7 | sylib 217 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 = ∅) |
9 | ssun2 4103 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
10 | sseq2 3943 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
11 | 9, 10 | mpbii 232 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 ⊆ ∅) |
12 | ss0b 4328 | . . . 4 ⊢ (𝐵 ⊆ ∅ ↔ 𝐵 = ∅) | |
13 | 11, 12 | sylib 217 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 = ∅) |
14 | 8, 13 | jca 511 | . 2 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
15 | 3, 14 | impbii 208 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: undisj1 4392 undisj2 4393 disjpr2 4646 rankxplim3 9570 ssxr 10975 rpnnen2lem12 15862 wwlksnext 28159 asindmre 35787 iunrelexp0 41199 uneqsn 41522 |
Copyright terms: Public domain | W3C validator |