MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un00 Structured version   Visualization version   GIF version

Theorem un00 4390
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)

Proof of Theorem un00
StepHypRef Expression
1 uneq12 4108 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
2 un0 4339 . . 3 (∅ ∪ ∅) = ∅
31, 2eqtrdi 2782 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = ∅)
4 ssun1 4123 . . . . 5 𝐴 ⊆ (𝐴𝐵)
5 sseq2 3956 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐴𝐵) ↔ 𝐴 ⊆ ∅))
64, 5mpbii 233 . . . 4 ((𝐴𝐵) = ∅ → 𝐴 ⊆ ∅)
7 ss0b 4346 . . . 4 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
86, 7sylib 218 . . 3 ((𝐴𝐵) = ∅ → 𝐴 = ∅)
9 ssun2 4124 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 sseq2 3956 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
119, 10mpbii 233 . . . 4 ((𝐴𝐵) = ∅ → 𝐵 ⊆ ∅)
12 ss0b 4346 . . . 4 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
1311, 12sylib 218 . . 3 ((𝐴𝐵) = ∅ → 𝐵 = ∅)
148, 13jca 511 . 2 ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))
153, 14impbii 209 1 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  cun 3895  wss 3897  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279
This theorem is referenced by:  undisj1  4407  undisj2  4408  disjpr2  4661  rankxplim3  9769  ssxr  11177  rpnnen2lem12  16129  wwlksnext  29866  asindmre  37743  tfsconcat00  43380  iunrelexp0  43735  uneqsn  44058
  Copyright terms: Public domain W3C validator