| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > un00 | Structured version Visualization version GIF version | ||
| Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| un00 | ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq12 4143 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = (∅ ∪ ∅)) | |
| 2 | un0 4374 | . . 3 ⊢ (∅ ∪ ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2787 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = ∅) |
| 4 | ssun1 4158 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 5 | sseq2 3990 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐴 ⊆ ∅)) | |
| 6 | 4, 5 | mpbii 233 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 ⊆ ∅) |
| 7 | ss0b 4381 | . . . 4 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 = ∅) |
| 9 | ssun2 4159 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | sseq2 3990 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
| 11 | 9, 10 | mpbii 233 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 ⊆ ∅) |
| 12 | ss0b 4381 | . . . 4 ⊢ (𝐵 ⊆ ∅ ↔ 𝐵 = ∅) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 = ∅) |
| 14 | 8, 13 | jca 511 | . 2 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
| 15 | 3, 14 | impbii 209 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: undisj1 4442 undisj2 4443 disjpr2 4694 rankxplim3 9900 ssxr 11309 rpnnen2lem12 16248 wwlksnext 29880 asindmre 37732 tfsconcat00 43338 iunrelexp0 43693 uneqsn 44016 |
| Copyright terms: Public domain | W3C validator |