![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > un00 | Structured version Visualization version GIF version |
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
un00 | ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq12 3984 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = (∅ ∪ ∅)) | |
2 | un0 4192 | . . 3 ⊢ (∅ ∪ ∅) = ∅ | |
3 | 1, 2 | syl6eq 2829 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = ∅) |
4 | ssun1 3998 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
5 | sseq2 3845 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐴 ⊆ ∅)) | |
6 | 4, 5 | mpbii 225 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 ⊆ ∅) |
7 | ss0b 4198 | . . . 4 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
8 | 6, 7 | sylib 210 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 = ∅) |
9 | ssun2 3999 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
10 | sseq2 3845 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
11 | 9, 10 | mpbii 225 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 ⊆ ∅) |
12 | ss0b 4198 | . . . 4 ⊢ (𝐵 ⊆ ∅ ↔ 𝐵 = ∅) | |
13 | 11, 12 | sylib 210 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 = ∅) |
14 | 8, 13 | jca 507 | . 2 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
15 | 3, 14 | impbii 201 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1601 ∪ cun 3789 ⊆ wss 3791 ∅c0 4140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 |
This theorem is referenced by: undisj1 4253 undisj2 4254 disjpr2 4479 rankxplim3 9041 ssxr 10446 rpnnen2lem12 15358 wwlksnext 27254 asindmre 34115 iunrelexp0 38944 uneqsn 39270 |
Copyright terms: Public domain | W3C validator |