|   | Mathbox for Wolf Lammen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbnf1 | Structured version Visualization version GIF version | ||
| Description: Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2361. Note: This theorem shows that sbnf2 2361 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| wl-sbnf1 | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5 2282 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 2151 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
| 3 | wl-sbhbt 37555 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | |
| 4 | 2, 3 | albid 2222 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | 
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |