| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbnf1 | Structured version Visualization version GIF version | ||
| Description: Two ways expressing that 𝑥 is effectively not free in 𝜑. Simplified version of sbnf2 2358. Note: This theorem shows that sbnf2 2358 has unnecessary distinct variable constraints. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-sbnf1 | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5 2284 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | nfa1 2154 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
| 3 | wl-sbhbt 37598 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) | |
| 4 | 2, 3 | albid 2225 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (Ⅎ𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |