Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbhbt Structured version   Visualization version   GIF version

Theorem wl-sbhbt 35757
Description: Closed form of sbhb 2523. Characterizing the expression 𝜑 → ∀𝑥𝜑 using a substitution expression. (Contributed by Wolf Lammen, 28-Jul-2019.)
Assertion
Ref Expression
wl-sbhbt (∀𝑥𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))

Proof of Theorem wl-sbhbt
StepHypRef Expression
1 wl-sb8t 35755 . . 3 (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
21imbi2d 341 . 2 (∀𝑥𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)))
3 19.21t 2197 . . 3 (Ⅎ𝑦𝜑 → (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)))
43sps 2176 . 2 (∀𝑥𝑦𝜑 → (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)))
52, 4bitr4d 282 1 (∀𝑥𝑦𝜑 → ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1783  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-11 2152  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by:  wl-sbnf1  35758
  Copyright terms: Public domain W3C validator