Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12d Structured version   Visualization version   GIF version

Theorem xrneq12d 36515
Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.)
Hypotheses
Ref Expression
xrneq12d.1 (𝜑𝐴 = 𝐵)
xrneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xrneq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem xrneq12d
StepHypRef Expression
1 xrneq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xrneq12 36513 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-br 5075  df-opab 5137  df-co 5598  df-xrn 36501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator