Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12d Structured version   Visualization version   GIF version

Theorem xrneq12d 34780
 Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.)
Hypotheses
Ref Expression
xrneq12d.1 (𝜑𝐴 = 𝐵)
xrneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xrneq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem xrneq12d
StepHypRef Expression
1 xrneq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xrneq12 34778 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2anc 579 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601   ⋉ cxrn 34610 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400  df-in 3799  df-ss 3806  df-br 4889  df-opab 4951  df-co 5366  df-xrn 34766 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator