Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12 Structured version   Visualization version   GIF version

Theorem xrneq12 36658
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.)
Assertion
Ref Expression
xrneq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem xrneq12
StepHypRef Expression
1 xrneq1 36652 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 xrneq2 36655 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2796 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  cxrn 36445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905  df-ss 3915  df-br 5093  df-opab 5155  df-co 5629  df-xrn 36646
This theorem is referenced by:  xrneq12i  36659  xrneq12d  36660
  Copyright terms: Public domain W3C validator