| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| xrneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrneq1 38408 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | |
| 2 | xrneq2 38411 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⋉ cxrn 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3909 df-ss 3919 df-br 5092 df-opab 5154 df-co 5625 df-xrn 38398 |
| This theorem is referenced by: xrneq12i 38415 xrneq12d 38416 |
| Copyright terms: Public domain | W3C validator |