![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq1 37758 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | |
2 | xrneq2 37761 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ⋉ cxrn 37553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-in 3950 df-ss 3960 df-br 5142 df-opab 5204 df-co 5678 df-xrn 37752 |
This theorem is referenced by: xrneq12i 37765 xrneq12d 37766 |
Copyright terms: Public domain | W3C validator |