Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecxrn Structured version   Visualization version   GIF version

Theorem elecxrn 38388
Description: Elementhood in the (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
elecxrn (𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elecxrn
StepHypRef Expression
1 xrnrel 38375 . . 3 Rel (𝑅𝑆)
2 relelec 8793 . . 3 (Rel (𝑅𝑆) → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵)
4 brxrn2 38377 . 2 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
53, 4bitrid 283 1 (𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wex 1778  wcel 2107  cop 4631   class class class wbr 5142  Rel wrel 5689  [cec 8744  cxrn 38182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568  df-1st 8015  df-2nd 8016  df-ec 8748  df-xrn 38373
This theorem is referenced by:  ecxrn  38389
  Copyright terms: Public domain W3C validator