| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elecxrn | Structured version Visualization version GIF version | ||
| Description: Elementhood in the (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| elecxrn | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38401 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | relelec 8664 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝐴(𝑅 ⋉ 𝑆)𝐵) |
| 4 | brxrn2 38403 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 Rel wrel 5616 [cec 8615 ⋉ cxrn 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-1st 7916 df-2nd 7917 df-ec 8619 df-xrn 38399 |
| This theorem is referenced by: ecxrn 38419 |
| Copyright terms: Public domain | W3C validator |