Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecxrn Structured version   Visualization version   GIF version

Theorem elecxrn 38345
Description: Elementhood in the (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
elecxrn (𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦

Proof of Theorem elecxrn
StepHypRef Expression
1 xrnrel 38328 . . 3 Rel (𝑅𝑆)
2 relelec 8695 . . 3 (Rel (𝑅𝑆) → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵))
31, 2ax-mp 5 . 2 (𝐵 ∈ [𝐴](𝑅𝑆) ↔ 𝐴(𝑅𝑆)𝐵)
4 brxrn2 38330 . 2 (𝐴𝑉 → (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
53, 4bitrid 283 1 (𝐴𝑉 → (𝐵 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wex 1779  wcel 2109  cop 4591   class class class wbr 5102  Rel wrel 5636  [cec 8646  cxrn 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-ec 8650  df-xrn 38326
This theorem is referenced by:  ecxrn  38346
  Copyright terms: Public domain W3C validator