| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elecxrn | Structured version Visualization version GIF version | ||
| Description: Elementhood in the (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| elecxrn | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38355 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | relelec 8718 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝐴(𝑅 ⋉ 𝑆)𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ 𝐴(𝑅 ⋉ 𝑆)𝐵) |
| 4 | brxrn2 38357 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 Rel wrel 5643 [cec 8669 ⋉ cxrn 38168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-ec 8673 df-xrn 38353 |
| This theorem is referenced by: ecxrn 38373 |
| Copyright terms: Public domain | W3C validator |