![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq12i.1 | ⊢ 𝐴 = 𝐵 |
xrneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xrneq12i | ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xrneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xrneq12 34693 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
4 | 1, 2, 3 | mp2an 685 | 1 ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ⋉ cxrn 34523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-in 3805 df-ss 3812 df-br 4874 df-opab 4936 df-co 5351 df-xrn 34681 |
This theorem is referenced by: xrnres4 34711 xrnresex 34712 |
Copyright terms: Public domain | W3C validator |