![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq12i.1 | ⊢ 𝐴 = 𝐵 |
xrneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xrneq12i | ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xrneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xrneq12 37159 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⋉ cxrn 36948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3953 df-ss 3963 df-br 5145 df-opab 5207 df-co 5681 df-xrn 37147 |
This theorem is referenced by: xrnres4 37181 xrnresex 37182 |
Copyright terms: Public domain | W3C validator |