| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| xrneq12i.1 | ⊢ 𝐴 = 𝐵 |
| xrneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| xrneq12i | ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrneq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xrneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | xrneq12 38436 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⋉ cxrn 38224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 df-ss 3914 df-br 5090 df-opab 5152 df-co 5623 df-xrn 38414 |
| This theorem is referenced by: xrnres4 38462 xrnresex 38463 |
| Copyright terms: Public domain | W3C validator |