Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq12i.1 | ⊢ 𝐴 = 𝐵 |
xrneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xrneq12i | ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xrneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xrneq12 36440 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 df-xrn 36428 |
This theorem is referenced by: xrnres4 36458 xrnresex 36459 |
Copyright terms: Public domain | W3C validator |