Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12i Structured version   Visualization version   GIF version

Theorem xrneq12i 34694
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypotheses
Ref Expression
xrneq12i.1 𝐴 = 𝐵
xrneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xrneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem xrneq12i
StepHypRef Expression
1 xrneq12i.1 . 2 𝐴 = 𝐵
2 xrneq12i.2 . 2 𝐶 = 𝐷
3 xrneq12 34693 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 685 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  cxrn 34523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-v 3416  df-in 3805  df-ss 3812  df-br 4874  df-opab 4936  df-co 5351  df-xrn 34681
This theorem is referenced by:  xrnres4  34711  xrnresex  34712
  Copyright terms: Public domain W3C validator