Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12i Structured version   Visualization version   GIF version

Theorem xrneq12i 38348
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypotheses
Ref Expression
xrneq12i.1 𝐴 = 𝐵
xrneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xrneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem xrneq12i
StepHypRef Expression
1 xrneq12i.1 . 2 𝐴 = 𝐵
2 xrneq12i.2 . 2 𝐶 = 𝐷
3 xrneq12 38347 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 692 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cxrn 38144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-in 3933  df-ss 3943  df-br 5120  df-opab 5182  df-co 5663  df-xrn 38335
This theorem is referenced by:  xrnres4  38369  xrnresex  38370
  Copyright terms: Public domain W3C validator