Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq12i Structured version   Visualization version   GIF version

Theorem xrneq12i 38365
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.)
Hypotheses
Ref Expression
xrneq12i.1 𝐴 = 𝐵
xrneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
xrneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem xrneq12i
StepHypRef Expression
1 xrneq12i.1 . 2 𝐴 = 𝐵
2 xrneq12i.2 . 2 𝐶 = 𝐷
3 xrneq12 38364 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 692 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  cxrn 38160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-in 3969  df-ss 3979  df-br 5148  df-opab 5210  df-co 5697  df-xrn 38352
This theorem is referenced by:  xrnres4  38386  xrnresex  38387
  Copyright terms: Public domain W3C validator