![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrneq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
Ref | Expression |
---|---|
xrneq12i.1 | ⊢ 𝐴 = 𝐵 |
xrneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
xrneq12i | ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrneq12i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xrneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | xrneq12 38332 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⋉ cxrn 38127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 df-ss 3993 df-br 5167 df-opab 5229 df-co 5704 df-xrn 38320 |
This theorem is referenced by: xrnres4 38354 xrnresex 38355 |
Copyright terms: Public domain | W3C validator |