Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrneq2d Structured version   Visualization version   GIF version

Theorem xrneq2d 36418
Description: Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.)
Hypothesis
Ref Expression
xrneq2d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xrneq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem xrneq2d
StepHypRef Expression
1 xrneq2d.1 . 2 (𝜑𝐴 = 𝐵)
2 xrneq2 36416 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 17 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cxrn 36238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-in 3891  df-ss 3901  df-br 5071  df-opab 5133  df-co 5588  df-xrn 36407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator